77
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In settings where both Plasmodium vivax and Plasmodium falciparum infection cause malaria, rapid diagnostic tests (RDTs) need to distinguish which species is causing the patients' symptoms, as different treatments are required. Older RDTs incorporated two test lines to distinguish malaria due to P. falciparum, from malaria due to any other Plasmodium species (non-falciparum). These RDTs can be classified according to which antibodies they use: Type 2 RDTs use HRP-2 (for P. falciparum) and aldolase (all species); Type 3 RDTs use HRP-2 (for P. falciparum) and pLDH (all species); Type 4 use pLDH (from P. falciparum) and pLDH (all species).

          More recently, RDTs have been developed to distinguish P. vivax parasitaemia by utilizing a pLDH antibody specific to P. vivax.

          Objectives

          To assess the diagnostic accuracy of RDTs for detecting non-falciparum or P. vivax parasitaemia in people living in malaria-endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria, and to identify which types and brands of commercial test best detect non-falciparum and P. vivax malaria.

          Search methods

          We undertook a comprehensive search of the following databases up to 31 December 2013: Cochrane Infectious Diseases Group Specialized Register; MEDLINE; EMBASE; MEDION; Science Citation Index; Web of Knowledge; African Index Medicus; LILACS; and IndMED.

          Selection criteria

          Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction) in blood samples from a random or consecutive series of patients attending ambulatory health facilities with symptoms suggestive of malaria in non-falciparum endemic areas.

          Data collection and analysis

          For each study, two review authors independently extracted a standard set of data using a tailored data extraction form. We grouped comparisons by type of RDT (defined by the combinations of antibodies used), and combined in meta-analysis where appropriate. Average sensitivities and specificities are presented alongside 95% confidence intervals (95% CI).

          Main results

          We included 47 studies enrolling 22,862 participants. Patient characteristics, sampling methods and reference standard methods were poorly reported in most studies.

          RDTs detecting 'non-falciparum' parasitaemia

          Eleven studies evaluated Type 2 tests compared with microscopy, 25 evaluated Type 3 tests, and 11 evaluated Type 4 tests. In meta-analyses, average sensitivities and specificities were 78% (95% CI 73% to 82%) and 99% (95% CI 97% to 99%) for Type 2 tests, 78% (95% CI 69% to 84%) and 99% (95% CI 98% to 99%) for Type 3 tests, and 89% (95% CI 79% to 95%) and 98% (95% CI 97% to 99%) for Type 4 tests, respectively. Type 4 tests were more sensitive than both Type 2 (P = 0.01) and Type 3 tests (P = 0.03).

          Five studies compared Type 3 tests with PCR; in meta-analysis, the average sensitivity and specificity were 81% (95% CI 72% to 88%) and 99% (95% CI 97% to 99%) respectively.

          RDTs detecting P.vivax parasitaemia

          Eight studies compared pLDH tests to microscopy; the average sensitivity and specificity were 95% (95% CI 86% to 99%) and 99% (95% CI 99% to 100%), respectively.

          Authors' conclusions

          RDTs designed to detect P. vivax specifically, whether alone or as part of a mixed infection, appear to be more accurate than older tests designed to distinguish P. falciparum malaria from non-falciparum malaria. Compared to microscopy, these tests fail to detect around 5% of P. vivax cases. This Cochrane Review, in combination with other published information about in vitro test performance and stability in the field, can assist policy-makers to choose between the available RDTs.

          PLAIN LANGUAGE SUMMARY
          Rapid tests for diagnosing malaria caused by Plasmodium vivax or other less common parasites

          This review summarises trials evaluating the accuracy of rapid diagnostic tests (RDTs) for diagnosing malaria due to Plasmodium vivax or other non-falciparum species. After searching for relevant studies up to December 2013, we included 47 studies, enrolling 22,862 adults and children.

          What are rapid tests and why do they need to be able to distinguish Plasmodium vivax malaria

          RDTs are simple to use, point of care tests, suitable for use in rural settings by primary healthcare workers. RDTs work by using antibodies to detect malaria antigens in the patient's blood. A drop of blood is placed on the test strip where the antibodies and antigen combine to create a distinct line indicating a positive test.

          Malaria can be caused any one of five species of Plasmodium parasite, but P. falciparum and P. vivax are the most common. In some areas, RDTs need to be able to distinguish which species is causing the malaria symptoms as different species may require different treatments. Unlike P. falciparum, P. vivax has a liver stage which can cause repeated illness every few months unless it is treated with primaquine. The most common types of RDTs for P. vivax use two test lines in combination; one line specific to P. falciparum, and one line which can detect any species of Plasmodium. If the P. falciparum line is negative and the 'any species' line is positive, the illness is presumed to be due to P. vivax (but could also be caused by P. malariae, or P. ovale) . More recently, RDTs have been developed which specifically test for P. vivax.

          What does the research say

          RDTs testing for non-falciparum malaria were very specific (range 98% to 100%) meaning that only 1% to 2% of patients who test positive would actually not have the disease. However, they were less sensitive (range 78% to 89%), meaning between 11% and 22% of people with non-falciparum malaria would actually get a negative test result.

          RDTs which specifically tested for P. vivax were more accurate with a specificity of 99% and a sensitivity of 95%, meaning that only 5% of people with P. vivax malaria would have a negative test result.

          Related collections

          Most cited references586

          • Record: found
          • Abstract: found
          • Article: not found

          A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT).

          The absolute necessity for rational therapy in the face of rampant drug resistance places increasing importance on the accuracy of malaria diagnosis. Giemsa microscopy and rapid diagnostic tests (RDTs) represent the two diagnostics most likely to have the largest impact on malaria control today. These two methods, each with characteristic strengths and limitations, together represent the best hope for accurate diagnosis as a key component of successful malaria control. This review addresses the quality issues with current malaria diagnostics and presents data from recent rapid diagnostic test trials. Reduction of malaria morbidity and drug resistance intensity plus the associated economic loss of these two factors require urgent scaling up of the quality of parasite-based diagnostic methods. An investment in anti-malarial drug development or malaria vaccine development should be accompanied by a parallel commitment to improve diagnostic tools and their availability to people living in malarious areas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid diagnostic tests for malaria parasites.

            Malaria presents a diagnostic challenge to laboratories in most countries. Endemic malaria, population movements, and travelers all contribute to presenting the laboratory with diagnostic problems for which it may have little expertise available. Drug resistance and genetic variation has altered many accepted morphological appearances of malaria species, and new technology has given an opportunity to review available procedures. Concurrently the World Health Organization has opened a dialogue with scientists, clinicians, and manufacturers on the realistic possibilities for developing accurate, sensitive, and cost-effective rapid diagnostic tests for malaria, capable of detecting 100 parasites/microl from all species and with a semiquantitative measurement for monitoring successful drug treatment. New technology has to be compared with an accepted "gold standard" that makes comparisons of sensitivity and specificity between different methods. The majority of malaria is found in countries where cost-effectiveness is an important factor and ease of performance and training is a major consideration. Most new technology for malaria diagnosis incorporates immunochromatographic capture procedures, with conjugated monoclonal antibodies providing the indicator of infection. Preferred targeted antigens are those which are abundant in all asexual and sexual stages of the parasite and are currently centered on detection of HRP-2 from Plasmodium falciparum and parasite-specific lactate dehydrogenase or Plasmodium aldolase from the parasite glycolytic pathway found in all species. Clinical studies allow effective comparisons between different formats, and the reality of nonmicroscopic diagnoses of malaria is considered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid diagnostic tests compared with malaria microscopy for guiding outpatient treatment of febrile illness in Tanzania: randomised trial.

              To compare rapid diagnostic tests (RDTs) for malaria with routine microscopy in guiding treatment decisions for febrile patients. Randomised trial. Outpatient departments in northeast Tanzania at varying levels of malaria transmission. 2416 patients for whom a malaria test was requested. Staff received training on rapid diagnostic tests; patients sent for malaria tests were randomised to rapid diagnostic test or routine microscopy Proportion of patients with a negative test prescribed an antimalarial drug. Of 7589 outpatient consultations, 2425 (32%) had a malaria test requested. Of 1204 patients randomised to microscopy, 1030 (86%) tested negative for malaria; 523 (51%) of these were treated with an antimalarial drug. Of 1193 patients randomised to rapid diagnostic test, 1005 (84%) tested negative; 540 (54%) of these were treated for malaria (odds ratio 1.13, 95% confidence interval 0.95 to 1.34; P=0.18). Children aged under 5 with negative rapid diagnostic tests were more likely to be prescribed an antimalarial drug than were those with negative slides (P=0.003). Patients with a negative test by any method were more likely to be prescribed an antibiotic (odds ratio 6.42, 4.72 to 8.75; P<0.001). More than 90% of prescriptions for antimalarial drugs in low-moderate transmission settings were for patients for whom a test requested by a clinician was negative for malaria. Although many cases of malaria are missed outside the formal sector, within it malaria is massively over-diagnosed. This threatens the sustainability of deployment of artemisinin combination treatment, and treatable bacterial diseases are likely to be missed. Use of rapid diagnostic tests, with basic training for clinical staff, did not in itself lead to any reduction in over-treatment for malaria. Interventions to improve clinicians' management of febrile illness are essential but will not be easy. Clinical trials NCT00146796 [ClinicalTrials.gov].
                Bookmark

                Author and article information

                Journal
                Cochrane Database Syst Rev
                Cochrane Database Syst Rev
                cd
                The Cochrane Database of Systematic Reviews
                John Wiley & Sons, Ltd (Chichester, UK )
                1469-493X
                18 December 2014
                : 12
                : 1-195
                Affiliations
                [1 ]Department of Clinical Sciences, Liverpool School of Tropical Medicine Liverpool, UK
                [2 ]Cancer Research UK Clinical Trials Unit, School of Cancer Sciences, University of Birmingham Birmingham, UK
                [3 ]UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization Geneva, Switzerland
                [4 ]Public Health, Epidemiology and Biostatistics, University of Birmingham Birmingham, UK
                Author notes
                Contact address: Katharine Abba, International Health Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, Merseyside, L3 5QA, UK. K.abba@ 123456liverpool.ac.uk .

                Editorial group: Cochrane Infectious Diseases Group.

                Publication status and date: New, published in Issue 12, 2014.

                Review content assessed as up-to-date: 31 December 2013.

                Article
                10.1002/14651858.CD011431
                4453861
                25519857
                d3d63880-45d7-4084-99d0-3dda20e3aae4
                Copyright © 2014 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
                History
                Categories
                Diagnostic Test Accuracy Review

                Comments

                Comment on this article