20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TRPV4 channel activation selectively inhibits tumor endothelial cell proliferation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endothelial cell proliferation is a critical event during angiogenesis, regulated by both soluble factors and mechanical forces. Although the proliferation of tumor cells is studied extensively, little is known about the proliferation of tumor endothelial cells (TEC) and its contribution to tumor angiogenesis. We have recently shown that reduced expression of the mechanosensitive ion channel TRPV4 in TEC causes aberrant mechanosensitivity that result in abnormal angiogenesis. Here, we show that TEC display increased proliferation compared to normal endothelial cells (NEC). Further, we found that TEC exhibit high basal ERK1/2 phosphorylation and increased expression of proliferative genes important in the G1/S phase of the cell cycle. Importantly, pharmacological activation of TRPV4, with a small molecular activator GSK1016790A (GSK), significantly inhibited TEC proliferation, but had no effect on the proliferation of NEC or the tumor cells (epithelial) themselves. This reduction in TEC proliferation by TRPV4 activation was correlated with a decrease in high basal ERK1/2 phosphorylation. Finally, using a syngeneic tumor model revealed that TRPV4 activation, with GSK, significantly reduced endothelial cell proliferation in vivo. Our findings suggest that TRPV4 channels regulate tumor angiogenesis by selectively inhibiting tumor endothelial cell proliferation.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Tensional homeostasis and the malignant phenotype.

          Tumors are stiffer than normal tissue, and tumors have altered integrins. Because integrins are mechanotransducers that regulate cell fate, we asked whether tissue stiffness could promote malignant behavior by modulating integrins. We found that tumors are rigid because they have a stiff stroma and elevated Rho-dependent cytoskeletal tension that drives focal adhesions, disrupts adherens junctions, perturbs tissue polarity, enhances growth, and hinders lumen formation. Matrix stiffness perturbs epithelial morphogenesis by clustering integrins to enhance ERK activation and increase ROCK-generated contractility and focal adhesions. Contractile, EGF-transformed epithelia with elevated ERK and Rho activity could be phenotypically reverted to tissues lacking focal adhesions if Rho-generated contractility or ERK activity was decreased. Thus, ERK and Rho constitute part of an integrated mechanoregulatory circuit linking matrix stiffness to cytoskeletal tension through integrins to regulate tissue phenotype.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Signal transduction by vascular endothelial growth factor receptors.

            VEGFs (vascular endothelial growth factors) control vascular development during embryogenesis and the function of blood vessels and lymphatic vessels in the adult. There are five related mammalian ligands, which act through three receptor tyrosine kinases. Signalling is modulated through neuropilins, which act as VEGF co-receptors. Heparan sulfate and integrins are also important modulators of VEGF signalling. Therapeutic agents that interfere with VEGF signalling have been developed with the aim of decreasing angiogenesis in diseases that involve tissue growth and inflammation, such as cancer. The present review will outline the current understanding and consequent biology of VEGF receptor signalling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival.

              Increases in cytosolic free Ca2+ ([Ca2+]i) represent a ubiquitous signalling mechanism that controls a variety of cellular processes, including proliferation, metabolism and gene transcription, yet under certain conditions increases in intracellular Ca2+ are cytotoxic. Thus, in using Ca2+ as a messenger, cells walk a tightrope in which [Ca2+]i is strictly maintained within defined boundaries. To adhere to these boundaries and to sustain their modified phenotype, many cancer cells remodel the expression or activity of their Ca2+ signalling apparatus. Here, we review the role of Ca2+ in promoting cell proliferation and cell death, how these processes are remodelled in cancer and the opportunities this might provide for therapeutic intervention.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                21 September 2015
                2015
                : 5
                : 14257
                Affiliations
                [1 ]Department of Integrative Medical Sciences, Northeast Ohio Medical University , Rootstown, OH 44272
                [2 ]School of Biomedical Sciences, Kent State University , Kent, OH 44240
                [3 ]Department of Chemistry, University of Akron , Akron, OH 44325
                [4 ]Department of Cell and Molecular Physiology, University of North Carolina , Chapel Hill, NC 27599.
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep14257
                10.1038/srep14257
                4585691
                26388427
                d3d69d87-5ec0-4a8a-92e9-568c6d53e255
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 09 June 2015
                : 21 August 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article