0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Efficient Feature Selection Algorithm for Gene Families Using NMF and ReliefF

      , ,
      Genes
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gene families, which are parts of a genome’s information storage hierarchy, play a significant role in the development and diversity of multicellular organisms. Several studies have focused on the characteristics of gene families, such as function, homology, or phenotype. However, statistical and correlation analyses on the distribution of gene family members in the genome have yet to be conducted. Here, a novel framework incorporating gene family analysis and genome selection based on NMF-ReliefF is reported. Specifically, the proposed method starts by obtaining gene families from the TreeFam database and determining the number of gene families within the feature matrix. Then, NMF-ReliefF is used to select features from the gene feature matrix, which is a new feature selection algorithm that overcomes the inefficiencies of traditional methods. Finally, a support vector machine is utilized to classify the acquired features. The results show that the framework achieved an accuracy of 89.1% and an AUC of 0.919 on the insect genome test set. We also employed four microarray gene data sets to evaluate the performance of the NMF-ReliefF algorithm. The outcomes show that the proposed method may strike a delicate balance between robustness and discrimination. Additionally, the proposed method’s categorization is superior to state-of-the-art feature selection approaches.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses

          Abstract eggNOG is a public database of orthology relationships, gene evolutionary histories and functional annotations. Here, we present version 5.0, featuring a major update of the underlying genome sets, which have been expanded to 4445 representative bacteria and 168 archaea derived from 25 038 genomes, as well as 477 eukaryotic organisms and 2502 viral proteomes that were selected for diversity and filtered by genome quality. In total, 4.4M orthologous groups (OGs) distributed across 379 taxonomic levels were computed together with their associated sequence alignments, phylogenies, HMM models and functional descriptors. Precomputed evolutionary analysis provides fine-grained resolution of duplication/speciation events within each OG. Our benchmarks show that, despite doubling the amount of genomes, the quality of orthology assignments and functional annotations (80% coverage) has persisted without significant changes across this update. Finally, we improved eggNOG online services for fast functional annotation and orthology prediction of custom genomics or metagenomics datasets. All precomputed data are publicly available for downloading or via API queries at http://eggnog.embl.de
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Principal component analysis

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              UniProt: the universal protein knowledgebase

              (2016)
              The UniProt knowledgebase is a large resource of protein sequences and associated detailed annotation. The database contains over 60 million sequences, of which over half a million sequences have been curated by experts who critically review experimental and predicted data for each protein. The remainder are automatically annotated based on rule systems that rely on the expert curated knowledge. Since our last update in 2014, we have more than doubled the number of reference proteomes to 5631, giving a greater coverage of taxonomic diversity. We implemented a pipeline to remove redundant highly similar proteomes that were causing excessive redundancy in UniProt. The initial run of this pipeline reduced the number of sequences in UniProt by 47 million. For our users interested in the accessory proteomes, we have made available sets of pan proteome sequences that cover the diversity of sequences for each species that is found in its strains and sub-strains. To help interpretation of genomic variants, we provide tracks of detailed protein information for the major genome browsers. We provide a SPARQL endpoint that allows complex queries of the more than 22 billion triples of data in UniProt (http://sparql.uniprot.org/). UniProt resources can be accessed via the website at http://www.uniprot.org/.
                Bookmark

                Author and article information

                Contributors
                Journal
                GENEG9
                Genes
                Genes
                MDPI AG
                2073-4425
                February 2023
                February 06 2023
                : 14
                : 2
                : 421
                Article
                10.3390/genes14020421
                d409b6d8-2120-4c43-9b3f-8541e3e53e30
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article