48
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lyme Disease, Virginia, USA, 2000–2011

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Geographic expansion of Ixodes scapularis ticks has increased human exposure to Borrelia burgdorferi.

          Abstract

          Lyme disease, caused by the bacterium Borrelia burgdorferi and transmitted in the eastern United States by the black-legged tick ( Ixodes scapularis), is increasing in incidence and expanding geographically. Recent environmental modeling based on extensive field collections of host-seeking I. scapularis ticks predicted a coastal distribution of ticks in mid-Atlantic states and an elevational limit of 510 m. However, human Lyme disease cases are increasing most dramatically at higher elevations in Virginia, a state where Lyme disease is rapidly emerging. Our goal was to explore the apparent incongruity, during 2000–2011, between human Lyme disease data and predicted and observed I. scapularis distribution. We found significantly higher densities of infected ticks at our highest elevation site than at lower elevation sites. We also found that I. scapularis ticks in Virginia are more closely related to northern than to southern tick populations. Clinicians and epidemiologists should be vigilant in light of the changing spatial distributions of risk.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The biological and social phenomenon of Lyme disease.

          Lyme disease, unknown in the United States two decades ago, is now the most common arthropod-borne disease in the country and has caused considerable morbidity in several suburban and rural areas. The emergence of this disease is in part the consequence of the reforestation of the northeastern United States and the rise in deer populations. Unfortunately, an accurate estimation of its importance to human and animal health has not been made because of difficulties in diagnosis and inadequate surveillance activities. Strategies for prevention of Lyme disease include vector control and vaccines.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe.

            The genetic polymorphism of Borrelia burgdorferi and Borrelia afzelii, two species that cause Lyme borreliosis, was estimated by sequence typing of four loci: the rrs-rrlA intergenic spacer (IGS) and the outer-membrane-protein gene p66 on the chromosome, and the outer-membrane-protein genes ospA and ospC on plasmids. The major sources of DNA for PCR amplification and sequencing were samples of the B. burgdorferi tick vector Ixodes scapularis, collected at a field site in an endemic region of the north-eastern United States, and the B. afzelii vector Ixodes ricinus, collected at a similar site in southern Sweden. The sequences were compared with those of reference strains and skin biopsy isolates, as well as database sequences. For B. burgdorferi, 10-13 alleles for each of the 4 loci, and a total of 9 distinct clonal lineages with linkage of all 4 loci, were found. For B. afzelii, 2 loci, ospC and IGS, were examined, and 11 IGS genotypes, 12 ospC alleles, and a total of 9 linkage groups were identified. The genetic variants of B. burgdorferi and B. afzelii among samples from the field sites accounted for the greater part of the genetic diversity previously reported from larger areas of the north-eastern United States and central and northern Europe. Although ospC alleles of both species had higher nucleotide diversity than other loci, the ospC locus showed evidence of intragenic recombination and was unsuitable for phylogenetic inference. In contrast, there was no detectable recombination at the IGS locus of B. burgdorferi. Moreover, beyond the signature nucleotides that specified 10 IGS genotypes, there were additional nucleotide polymorphisms that defined a total of 24 subtypes. Maximum-likelihood and parsimony cladograms of B. burgdorferi aligned IGS sequences revealed the subtype sequences to be terminal branches of clades, and the existence of at least three monophyletic lineages within B. burgdorferi. It is concluded that B. burgdorferi and B. afzelii have greater genetic diversity than had previously been estimated, and that the IGS locus alone is sufficient for strain typing and phylogenetic studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human risk of infection with Borrelia burgdorferi, the Lyme disease agent, in eastern United States.

              The geographic pattern of human risk for infection with Borrelia burgdorferi sensu stricto, the tick-borne pathogen that causes Lyme disease, was mapped for the eastern United States. The map is based on standardized field sampling in 304 sites of the density of Ixodes scapularis host-seeking nymphs infected with B. burgdorferi, which is closely associated with human infection risk. Risk factors for the presence and density of infected nymphs were used to model a continuous 8 km×8 km resolution predictive surface of human risk, including confidence intervals for each pixel. Discontinuous Lyme disease risk foci were identified in the Northeast and upper Midwest, with a transitional zone including sites with uninfected I. scapularis populations. Given frequent under- and over-diagnoses of Lyme disease, this map could act as a tool to guide surveillance, control, and prevention efforts and act as a baseline for studies tracking the spread of infection.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                Emerging Infect. Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                October 2014
                : 20
                : 10
                : 1661-1668
                Affiliations
                [1]University of Richmond, Richmond, Virginia, USA (R.J. Brinkerhoff, W.F. Gilliam);
                [2]University of KwaZulu-Natal, Pietermaritzburg, South Africa (R.J. Brinkerhoff);
                [3]Virginia Department of Health, Richmond (D. Gaines)
                Author notes
                Address for correspondence: R. Jory Brinkerhoff, Department of Biology, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA; email: jbrinker@ 123456richmond.edu
                Article
                13-0782
                10.3201/eid2010.130782
                4193267
                25272308
                d499ab4f-ad74-4a55-8f69-48a1167f2a95
                History
                Categories
                Research
                Research

                Infectious disease & Microbiology
                acari,borrelia burgdorferi,ixodes scapularis,range expansion,zoonosis,ticks,lyme disease,virginia,vector-borne infections,bacteria

                Comments

                Comment on this article