13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lipids from Hermetia illucens, an Innovative and Sustainable Source

      , , , , , , ,
      Sustainability
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The exponential increase of global demand for proteins and lipids can no longer be satisfied by classical sources. High amounts of CO2 produced by intensive livestock breeding and its effects on the environment are the main factors that prevent the use of animals as primary sources for proteins and lipids, calling for the use of new sustainable sources, such as insects. The massive breeding of bioconverter insects as a feed source has been a major topic in recent years, with both economic and scientific aspects related to rearing and subsequent processing optimization. The larvae of Hermetia illucens (Diptera: Stratiomyidae) (also known as Black Soldier Fly) can be used for the eco-sustainable production of proteins and lipids with high biological and economic value. Lipids can be obtained from BSF bioconversion processes and are present in high quantities in the last instar larvae and prepupae. Fats obtained from BSF are used as animal feed ingredients, in the formulation of several products for personal care, and in biodiesel production. To enable the use of insect-derived lipids, it is important to understand how to optimize their extraction. Here, we summarize the published information on the composition, the extraction methods, and the possible applications of the BSF lipid component.

          Related collections

          Most cited references201

          • Record: found
          • Abstract: not found
          • Article: not found
          Is Open Access

          A SIMPLE METHOD FOR THE ISOLATION AND PURIFICATION OF TOTAL LIPIDES FROM ANIMAL TISSUES

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics.

            Accurate profiling of lipidomes relies upon the quantitative and unbiased recovery of lipid species from analyzed cells, fluids, or tissues and is usually achieved by two-phase extraction with chloroform. We demonstrated that methyl-tert-butyl ether (MTBE) extraction allows faster and cleaner lipid recovery and is well suited for automated shotgun profiling. Because of MTBE's low density, lipid-containing organic phase forms the upper layer during phase separation, which simplifies its collection and minimizes dripping losses. Nonextractable matrix forms a dense pellet at the bottom of the extraction tube and is easily removed by centrifugation. Rigorous testing demonstrated that the MTBE protocol delivers similar or better recoveries of species of most all major lipid classes compared with the "gold-standard" Folch or Bligh and Dyer recipes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Microalgae for biodiesel production and other applications: A review

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                September 2021
                September 13 2021
                : 13
                : 18
                : 10198
                Article
                10.3390/su131810198
                d51d6efb-ead0-4f17-b94f-e4325af82e61
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article