Blog
About

41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aquaporin-4 antibody testing: direct comparison of M1-AQP4-DNA-transfected cells with leaky scanning versus M23-AQP4-DNA-transfected cells as antigenic substrate

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Neuromyelitis optica (NMO, Devic syndrome) is associated with antibodies to aquaporin-4 (NMO-IgG/AQP4-Ab) in the majority of cases. NMO-IgG/AQP4-Ab seropositivity in patients with NMO and its spectrum disorders has important differential diagnostic, prognostic and therapeutic implications. So-called cell-based assays (CBA) are thought to provide the best AQP4-Ab detection rates.

          Objective

          To compare directly the AQP4-IgG detection rates of the currently most widely used commercial CBA, which employs cells transfected with a full-length (M1)-human AQP4 DNA in a fashion that allows leaky scanning (LS) and thus expression of M23-AQP4 in addition to M1-AQP, to that of a newly developed CBA from the same manufacturer employing cells transfected with human M23-AQP4-DNA.

          Methods

          Results from 368 serum samples that had been referred for routine AQP4-IgG determination and had been tested in parallel in the two assays were compared.

          Results

          Seventy-seven out of 368 samples (20.9%) were positive for NMO-IgG/AQP4-Ab in at least one assay. Of these, 73 (94.8%) were positive in both assays. A single sample (1.3%) was exclusively positive in the novel assay; three samples (3.9%) were unequivocally positive only in the ‘classic’ assay due to high background intensity in the novel assay. Both median fluorescence intensity and background intensity were higher in the new assay.

          Conclusions

          This large study did not reveal significant differences in AQP4-IgG detection rates between the ‘classic’ CBA and a new M23-DNA-based CBA. Importantly, our results largely re-affirm the validity of previous studies that had used the ‘classic’ AQP4-CBA to establish NMO-IgG/AQP4-Ab seropositivity rates in NMO and in a variety of NMO spectrum disorders.

          Related collections

          Most cited references 49

          • Record: found
          • Abstract: found
          • Article: not found

          A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis.

          Neuromyelitis optica is an inflammatory demyelinating disease with generally poor prognosis that selectively targets optic nerves and spinal cord. It is commonly misdiagnosed as multiple sclerosis. Neither disease has a distinguishing biomarker, but optimum treatments differ. The relation of neuromyelitis optica to optic-spinal multiple sclerosis in Asia is uncertain. We assessed the capacity of a putative marker for neuromyelitis optica (NMO-IgG) to distinguish neuromyelitis optica and related disorders from multiple sclerosis. Indirect immunofluorescence with a composite substrate of mouse tissues identified a distinctive NMO-IgG staining pattern, which we characterised further by dual immunostaining. We tested masked serum samples from 102 North American patients with neuromyelitis optica or with syndromes that suggest high risk of the disorder, and 12 Japanese patients with optic-spinal multiple sclerosis. Control patients had multiple sclerosis, other myelopathies, optic neuropathies, and miscellaneous disorders. We also established clinical diagnoses for 14 patients incidentally shown to have NMO-IgG among 85000 tested for suspected paraneoplastic autoimmunity. NMO-IgG outlines CNS microvessels, pia, subpia, and Virchow-Robin space. It partly colocalises with laminin. Sensitivity and specificity were 73% (95% CI 60-86) and 91% (79-100) for neuromyelitis optica and 58% (30-86) and 100% (66-100) for optic-spinal multiple sclerosis. NMO-IgG was detected in half of patients with high-risk syndromes. Of 14 seropositive cases identified incidentally, 12 had neuromyelitis optica or a high-risk syndrome for the disease. NMO-IgG is a specific marker autoantibody of neuromyelitis optica and binds at or near the blood-brain barrier. It distinguishes neuromyelitis optica from multiple sclerosis. Asian optic-spinal multiple sclerosis seems to be the same as neuromyelitis optica.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel

            Neuromyelitis optica (NMO) is an inflammatory demyelinating disease that selectively affects optic nerves and spinal cord. It is considered a severe variant of multiple sclerosis (MS), and frequently is misdiagnosed as MS, but prognosis and optimal treatments differ. A serum immunoglobulin G autoantibody (NMO-IgG) serves as a specific marker for NMO. Here we show that NMO-IgG binds selectively to the aquaporin-4 water channel, a component of the dystroglycan protein complex located in astrocytic foot processes at the blood-brain barrier. NMO may represent the first example of a novel class of autoimmune channelopathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia

              Antibodies that immunoprecipitate 125I-α-dendrotoxin-labelled voltage-gated potassium channels extracted from mammalian brain tissue have been identified in patients with neuromyotonia, Morvan’s syndrome, limbic encephalitis and a few cases of adult-onset epilepsy. These conditions often improve following immunomodulatory therapies. However, the proportions of the different syndromes, the numbers with associated tumours and the relationships with potassium channel subunit antibody specificities have been unclear. We documented the clinical phenotype and tumour associations in 96 potassium channel antibody positive patients (titres >400 pM). Five had thymomas and one had an endometrial adenocarcinoma. To define the antibody specificities, we looked for binding of serum antibodies and their effects on potassium channel currents using human embryonic kidney cells expressing the potassium channel subunits. Surprisingly, only three of the patients had antibodies directed against the potassium channel subunits. By contrast, we found antibodies to three proteins that are complexed with 125I-α-dendrotoxin-labelled potassium channels in brain extracts: (i) contactin-associated protein-2 that is localized at the juxtaparanodes in myelinated axons; (ii) leucine-rich, glioma inactivated 1 protein that is most strongly expressed in the hippocampus; and (iii) Tag-1/contactin-2 that associates with contactin-associated protein-2. Antibodies to Kv1 subunits were found in three sera, to contactin-associated protein-2 in 19 sera, to leucine-rich, glioma inactivated 1 protein in 55 sera and to contactin-2 in five sera, four of which were also positive for the other antibodies. The remaining 18 sera were negative for potassium channel subunits and associated proteins by the methods employed. Of the 19 patients with contactin-associated protein-antibody-2, 10 had neuromyotonia or Morvan’s syndrome, compared with only 3 of the 55 leucine-rich, glioma inactivated 1 protein-antibody positive patients (P < 0.0001), who predominantly had limbic encephalitis. The responses to immunomodulatory therapies, defined by changes in modified Rankin scores, were good except in the patients with tumours, who all had contactin-associated-2 protein antibodies. This study confirms that the majority of patients with high potassium channel antibodies have limbic encephalitis without tumours. The identification of leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 as the major targets of potassium channel antibodies, and their associations with different clinical features, begins to explain the diversity of these syndromes; furthermore, detection of contactin-associated protein-2 antibodies should help identify the risk of an underlying tumour and a poor prognosis in future patients.
                Bookmark

                Author and article information

                Affiliations
                [1 ]Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
                [2 ]Department of Neurology Charité-Universitätsmedizin, NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Berlin, Germany
                [3 ]Institute for Experimental Immunology, affiliated to Euroimmun AG, Luebeck, Germany
                [4 ]Department of Neurology, Charité University Medicine, Berlin, Germany
                [5 ]Department of Neurology, University of Bochum, Bochum, Germany
                [6 ]IRCCS, C. Mondino National Neurological Institute, Pavia, Italy
                [7 ]Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
                [8 ]Molecular Neuroimmunology, Department of Neurology, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
                Contributors
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central
                1742-2094
                2014
                29 July 2014
                : 11
                : 129
                25074611 4128531 1742-2094-11-129 10.1186/1742-2094-11-129
                Copyright © 2014 Jarius et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Categories
                Research

                Comments

                Comment on this article