+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      4-1BB (CD137), an inducible costimulatory receptor, as a specific target for cancer therapy


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Although considerable progress has been made in understanding how tumors evade immune surveillance, measures to counter the same have not kept pace with the advances made in designing effective strategies. 4-1BB (CD137; TNFRS9), an activation-induced costimulatory molecule, is an important regulator of immune responses. Targeting 4-1BB or its natural ligand 4-1BB ligand (4-1BBL) has important implications in many clinical conditions, including cancer. In-depth analysis revealed that 4-1BB-mediated anti-cancer effects are based on its ability to induce activation of cytotoxic T lymphocytes (CTL), and among others, high amounts of IFN-γ. In this review, we will discuss the various aspects of 4-1BB-mediated anti-tumor responses, the basis of such responses, and future directions. [BMB Reports 2014; 47(3): 122-129]

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          4-1BB Costimulatory Signals Preferentially Induce CD8+ T Cell Proliferation and Lead to the Amplification In Vivo of Cytotoxic T Cell Responses

          The 4-1BB receptor is an inducible type I membrane protein and member of the tumor necrosis factor receptor (TNFR) superfamily that is rapidly expressed on the surface of CD4+ and CD8+ T cells after antigen- or mitogen-induced activation. Cross-linking of 4-1BB and the T cell receptor (TCR) on activated T cells has been shown to deliver a costimulatory signal to T cells. Here, we expand upon previously published studies by demonstrating that CD8+ T cells when compared with CD4+ T cells are preferentially responsive to both early activation events and proliferative signals provided via the TCR and 4-1BB. In comparison, CD28-mediated costimulatory signals appear to function in a reciprocal manner to those induced through 4-1BB costimulation. In vivo examination of the effects of anti-4-1BB monoclonal antibodies (mAbs) on antigen-induced T cell activation have shown that the administration of epitope-specific anti-4-1BB mAbs amplified the generation of H-2d–specific cytotoxic T cells in a murine model of acute graft versus host disease (GVHD) and enhanced the rapidity of cardiac allograft or skin transplant rejection in mice. Cytokine analysis of in vitro activated CD4+ and CD8+ T cells revealed that anti-4-1BB costimulation markedly enhanced interferon-γ production by CD8+ T cells and that anti-4-1BB mediated proliferation of CD8+ T cells appears to be IL-2 independent. The results of these studies suggest that regulatory signals delivered by the 4-1BB receptor play an important role in the regulation of cytotoxic T cells in cellular immune responses to antigen.
            • Record: found
            • Abstract: found
            • Article: not found

            Adoptive T cell therapy for cancer in the clinic.

            The transfusion of lymphocytes, referred to as adoptive T cell therapy, is being tested for the treatment of cancer and chronic infections. Adoptive T cell therapy has the potential to enhance antitumor immunity, augment vaccine efficacy, and limit graft-versus-host disease. This form of personalized medicine is now in various early- and late-stage clinical trials. These trials are currently testing strategies to infuse tumor-infiltrating lymphocytes, CTLs, Th cells, and Tregs. Improved molecular biology techniques have also increased enthusiasm and feasibility for testing genetically engineered T cells. The current status of the field and prospects for clinical translation are reviewed herein.
              • Record: found
              • Abstract: found
              • Article: not found

              A novel population of expanded human CD3+CD56+ cells derived from T cells with potent in vivo antitumor activity in mice with severe combined immunodeficiency.

              P Lu, R Negrin (1994)
              Recently, we have reported a novel protocol for the generation of highly efficient cytotoxic effector cells by culturing PBLs in the presence of IFN-gamma, IL-2, mAb against CD3, and IL-1 alpha. We have termed these cultures cytokine-induced killer (CIK) cells because the phenotype of the cells with the greatest cytotoxicity expresses both the T cell marker CD3 and the NK cell marker CD56. Cells with this phenotype are rare (approximately 1 to approximately 5%) in uncultured PBLs. CD3+CD56+ cells expand nearly 1000-fold under these culture conditions. The majority of the CD3+CD56+ cytotoxic cells in CIK cultures were derived from CD3+CD56- T cells, and not CD3-CD56+ NK cells. Expression of CD56, but not CD8, on CD3+ cells correlated with the greatest cytotoxicity against various cellular targets. We have used mice with severe combined immunodeficiency (SCID) injected with human lymphoma cells to evaluate the in vivo antitumor effects of CIK vs lymphokine-activated killer (LAK) cells. Groups of animals inoculated with 1 x 10(6) SU-DHL4 cells (a human B lymphoma cell line with a t(14;18) chromosomal translocation), injected 1 day later with CIK cells either i.v. or i.p., had significantly prolonged survival compared with control animals injected with tumor cells alone (median survival 90 days vs 58 days, p < 0.001) or animals treated with LAK cells (median survival 90 days vs 68 days, p < 0.002). Approximately 30% of the SCID mice challenged with SU-DHL4 cells and treated with CIK cells became long-term survivors compared with none of the animals treated with LAK cells. No molecular evidence of occult lymphoma was found in the CIK cell-treated long-term survivors when their bone marrow, spleen, liver, and lung were analyzed by t(14;18) PCR at the end of 6 mo. By using these culture conditions, a novel population of cytotoxic cells can be generated readily from T cells that have superior in vivo antitumor activity in SCID mice, as compared with LAK cells.

                Author and article information

                BMB Rep
                BMB Rep
                BMB Reports
                Korean Society for Biochemistry and Molecular Biology
                March 2014
                : 47
                : 3
                : 122-129
                [1 ]Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA70112, USA
                [2 ]Cell and Immunobiology, and R & D Center for Cancer Therapeutics, National Cancer Center, Goyang 410-769, Korea
                Author notes
                [* ]Corresponding author. Tel: +82-31-920-2531; Fax: +82-31-920-2542; E-mail: bskwon@ 123456ncc.re.kr
                Copyright © 2014, Korean Society for Biochemistry and Molecular Biology

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                : 16 December 2013
                : 30 December 2013
                : 28 January 2014

                immunotherapy, tumor, 4-1bb


                Comment on this article