318
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dopamine Receptor Antagonists as New Mode-of-Action Insecticide Leads for Control of Aedes and Culex Mosquito Vectors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          New mode-of-action insecticides are sought to provide continued control of pesticide resistant arthropod vectors of neglected tropical diseases (NTDs). We previously identified antagonists of the AaDOP2 D1-like dopamine receptor (DAR) from the yellow fever mosquito, Aedes aegypti, with toxicity to Ae. aegypti larvae as leads for novel insecticides. To extend DAR-based insecticide discovery, we evaluated the molecular and pharmacological characteristics of an orthologous DAR target, CqDOP2, from Culex quinquefasciatus, the vector of lymphatic filariasis and West Nile virus.

          Methods/Results

          CqDOP2 has 94.7% amino acid identity to AaDOP2 and 28.3% identity to the human D1-like DAR, hD1. CqDOP2 and AaDOP2 exhibited similar pharmacological responses to biogenic amines and DAR antagonists in cell-based assays. The antagonists amitriptyline, amperozide, asenapine, chlorpromazine and doxepin were between 35 to 227-fold more selective at inhibiting the response of CqDOP2 and AaDOP2 in comparison to hD1. Antagonists were toxic to both C. quinquefasciatus and Ae. aegypti larvae, with LC50 values ranging from 41 to 208 μM 72 h post-exposure. Orthologous DOP2 receptors identified from the African malaria mosquito, Anopheles gambiae, the sand fly, Phlebotomus papatasi and the tsetse fly, Glossina morsitans, had high sequence similarity to CqDOP2 and AaDOP2.

          Conclusions

          DAR antagonists represent a putative new insecticide class with activity against C. quinquefasciatus and Ae. aegypti, the two most important mosquito vectors of NTDs. There has been limited change in the sequence and pharmacological properties of the DOP2 DARs of these species since divergence of the tribes Culicini and Aedini. We identified antagonists selective for mosquito versus human DARs and observed a correlation between DAR pharmacology and the in vivo larval toxicity of antagonists. These data demonstrate that sequence similarity can be predictive of target potential. On this basis, we propose expanded insecticide discovery around orthologous DOP2 targets from additional dipteran vectors.

          Author Summary

          New mode-of-action insecticides are required to control arthropod vectors of neglected tropical diseases (NTDs). Rational drug design approaches offer attractive methods to identify new insecticidal chemistries that are potent and selective for molecular targets of arthropod vectors. Previously identified antagonists of a D 1-like dopamine receptor (DAR) from the yellow fever mosquito, Aedes aegypti were toxic to the larvae of this species and are candidate novel insecticide leads. Building on this work, here we evaluated the molecular and pharmacological characteristics of an orthologous DAR from Culex quinquefasciatus, the vector of lymphatic filariasis and West Nile virus. We show that orthologous mosquito DARs have similar pharmacological profiles in vitro and that Ae. aegypti-active DAR antagonists are toxic to C. quinquefasciatus larvae in vivo. Sequence similarity between orthologous targets can be indicative of DAR target potential for discovery of potent, selective inhibitors. These findings justify expansion of insecticide discovery efforts to orthologous DARs from additional dipteran vectors of NTDs and provide support for DAR antagonists as a new class of chemistries for taxon-selective insecticides for vector control.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple sequence alignment with the Clustal series of programs.

          R Chenna (2003)
          The Clustal series of programs are widely used in molecular biology for the multiple alignment of both nucleic acid and protein sequences and for preparing phylogenetic trees. The popularity of the programs depends on a number of factors, including not only the accuracy of the results, but also the robustness, portability and user-friendliness of the programs. New features include NEXUS and FASTA format output, printing range numbers and faster tree calculation. Although, Clustal was originally developed to run on a local computer, numerous Web servers have been set up, notably at the EBI (European Bioinformatics Institute) (http://www.ebi.ac.uk/clustalw/).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Artemis: sequence visualization and annotation

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                20 March 2015
                March 2015
                : 9
                : 3
                : e0003515
                Affiliations
                [1 ]Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
                [2 ]Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
                Liverpool School of Tropical Medicine, UNITED KINGDOM
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ABN KFKE JMM VJW CAH. Performed the experiments: ABN KFKE JMM TBD EGL. Analyzed the data: ABN KFKE VJW CAH. Contributed reagents/materials/analysis tools: VJW CAH. Wrote the paper: ABN KFKE VJW CAH.

                Article
                PNTD-D-14-01773
                10.1371/journal.pntd.0003515
                4368516
                25793586
                d5db6a21-f9be-4228-b66a-da3d39a75532
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 9 October 2014
                : 2 January 2015
                Page count
                Figures: 6, Tables: 4, Pages: 19
                Funding
                This work was supported by a U.S. Department of Defense, Deployed War Fighter Project award, W911QY to CAH and VJW. Additional support was supplied from the Indiana Clinical and Translational Sciences Institute funded, in part, by Grant Number UL1TR001108 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files except for the sequence of CqDOP2 which is available from Genbank under the accession number KM262648.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article