7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Extracellular Matrix in Gastrointestinal Cancer-Associated Angiogenesis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients’ outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.

          Related collections

          Most cited references262

          • Record: found
          • Abstract: found
          • Article: found

          VEGF as a Key Mediator of Angiogenesis in Cancer

          Vascular endothelial growth factor (VEGF) is a homodimeric glycoprotein with a molecular weight of approximately 45 kDa. It is the key mediator of angiogenesis (the formation of new blood vessels), and binds two VEGF receptors (VEGF receptor-1 and VEGF receptor-2), which are expressed on vascular endothelial cells. In healthy humans, VEGF promotes angiogenesis in embryonic development and is important in wound healing in adults. VEGF is the key mediator of angiogenesis in cancer, in which it is up-regulated by oncogene expression, a variety of growth factors and also hypoxia. Angiogenesis is essential for cancer development and growth: before a tumor can grow beyond 1–2 mm, it requires blood vessels for nutrients and oxygen. The production of VEGF and other growth factors by the tumor results in the ‘angiogenic switch’, where new vasculature is formed in and around the tumor, allowing it to grow exponentially. Tumor vasculature formed under the influence of VEGF is structurally and functionally abnormal. Blood vessels are irregularly shaped, tortuous, have dead ends and are not organized into venules, arterioles and capillaries. They are also leaky and hemorrhagic, which leads to high interstitial pressure. These characteristics mean that tumor blood flow is suboptimal, resulting in hypoxia and further VEGF production. This central role of VEGF in the production of tumor vasculature makes it a rational target for anticancer therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab.

            Cetuximab is efficient in advanced colorectal cancer (CRC). We previously showed that KRAS mutations were associated with resistance to cetuximab in 30 CRC patients. The aim of this study was to validate, in an independent larger series of 89 patients, the prognostic value of KRAS mutations on response to cetuximab and survival. Eighty-nine metastatic CRC patients treated with cetuximab after treatment failure with irinotecan-based chemotherapy were analyzed for KRAS mutation by allelic discrimination on tumor DNA. The association between KRAS mutations and tumor response, skin toxicity, progression-free survival (PFS) and overall survival (OS) was analyzed. A KRAS mutation was present in 27% of the patients and was associated with resistance to cetuximab (0% v 40% of responders among the 24 mutated and 65 nonmutated patients, respectively; P < .001) and a poorer survival (median PFS: 10.1 v 31.4 weeks in patients without mutation; P = .0001; median OS: 10.1 v 14.3 months in patients without mutation; P = .026). When we pooled these 89 patients with patients from our previous study, the multivariate analysis showed that KRAS status was an independent prognostic factor associated with OS and PFS, whereas skin toxicity was only associated with OS. In a combined analysis, median OS times of patients with two, one, or no favorable prognostic factors (severe skin toxicity and no KRAS mutation) was of 15.6, 10.7, and 5.6 months, respectively. These results confirm the high prognostic value of KRAS mutations on response to cetuximab and survival in metastatic CRC patients treated with cetuximab.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Integrin structure, activation, and interactions.

              Integrins are large, membrane-spanning, heterodimeric proteins that are essential for a metazoan existence. All members of the integrin family adopt a shape that resembles a large "head" on two "legs," with the head containing the sites for ligand binding and subunit association. Most of the receptor dimer is extracellular, but both subunits traverse the plasma membrane and terminate in short cytoplasmic domains. These domains initiate the assembly of large signaling complexes and thereby bridge the extracellular matrix to the intracellular cytoskeleton. To allow cells to sample and respond to a dynamic pericellular environment, integrins have evolved a highly responsive receptor activation mechanism that is regulated primarily by changes in tertiary and quaternary structure. This review summarizes recent progress in the structural and molecular functional studies of this important class of adhesion receptor.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                23 May 2020
                May 2020
                : 21
                : 10
                : 3686
                Affiliations
                [1 ]Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; eandreuzzi@ 123456cro.it (E.A.); acapuano@ 123456cro.it (A.C.); evelina.poletto@ 123456cro.it (E.P.); epivetta@ 123456cro.it (E.P.); albinafejza@ 123456gmail.com (A.F.); favero.andrea.7@ 123456gmail.com (A.F.); rdoliana@ 123456cro.it (R.D.); pspessotto@ 123456cro.it (P.S.)
                [2 ]Department of Clinical Oncology, Experimental Gastrointestinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; rcannizzaro@ 123456cro.it
                Author notes
                [* ]Correspondence: mmongiat@ 123456cro.it ; Tel.: +39-0434-659-516
                [†]

                These authors contributed equally to this work.

                [‡]

                These authors share co-last authorship.

                Author information
                https://orcid.org/0000-0002-5925-5230
                https://orcid.org/0000-0002-5443-0570
                https://orcid.org/0000-0001-5481-5713
                https://orcid.org/0000-0002-6053-8182
                https://orcid.org/0000-0002-2020-222X
                https://orcid.org/0000-0002-3033-404X
                https://orcid.org/0000-0001-6509-0068
                Article
                ijms-21-03686
                10.3390/ijms21103686
                7279269
                32456248
                d66eff3e-7610-4f44-85f6-bedaff5762cd
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 04 May 2020
                : 21 May 2020
                Categories
                Review

                Molecular biology
                extracellular matrix,endothelial cells,angiogenesis,tumor microenvironment
                Molecular biology
                extracellular matrix, endothelial cells, angiogenesis, tumor microenvironment

                Comments

                Comment on this article