25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alternative BCG delivery strategies improve protection against Mycobacterium tuberculosis in non-human primates: Protection associated with mycobacterial antigen-specific CD4 effector memory T-cell populations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intradermal (ID) BCG injection provides incomplete protection against TB in humans and experimental models. Alternative BCG vaccination strategies may improve protection in model species, including rhesus macaques. This study compares the immunogenicity and efficacy of BCG administered by ID and intravenous (IV) injection, or as an intratracheal mucosal boost (ID + IT), against aerosol challenge with Mycobacterium tuberculosis Erdman strain. Disease pathology was significantly reduced, and survival improved, by each BCG vaccination strategy, relative to unvaccinated animals. However, IV induced protection surpassed that achieved by all other routes, providing an opportunity to explore protective immunological mechanisms using antigen-specific IFN-γ ELISpot and polychromatic flow cytometry assays. IFN-γ spot forming units and multifunctional CD4 T-cell frequencies increased significantly following each vaccination regimen and were greatest following IV immunisation. Vaccine-induced multifunctional CD4 T-cells producing IFN-γ and TNF-α were associated with reduced disease pathology following subsequent M.tb challenge; however, high frequencies of this population following M.tb infection correlated with increased pathology. Cytokine producing T-cells primarily occupied the CD4 transitional effector memory phenotype, implicating this population as central to the mycobacterial response, potentially contributing to the stringent control observed in IV vaccinated animals. This study demonstrates the protective efficacy of IV BCG vaccination in rhesus macaques, offering a valuable tool for the interrogation of immunological mechanisms and potential correlates of protection.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major.

          CD4+ T cells have a crucial role in mediating protection against a variety of pathogens through production of specific cytokines. However, substantial heterogeneity in CD4+ T-cell cytokine responses has limited the ability to define an immune correlate of protection after vaccination. Here, using multiparameter flow cytometry to assess the immune responses after immunization, we show that the degree of protection against Leishmania major infection in mice is predicted by the frequency of CD4+ T cells simultaneously producing interferon-gamma, interleukin-2 and tumor necrosis factor. Notably, multifunctional effector cells generated by all vaccines tested are unique in their capacity to produce high amounts of interferon-gamma. These data show that the quality of a CD4+ T-cell cytokine response can be a crucial determinant in whether a vaccine is protective, and may provide a new and useful prospective immune correlate of protection for vaccines based on T-helper type 1 (TH1) cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature.

            To quantify the efficacy of BCG vaccine against tuberculosis (TB). MEDLINE with index terms BCG vaccine, tuberculosis, and human. Experts from the Centers for Disease Control and Prevention and the World Health Organization, among others, provided lists of all known studies. A total of 1264 articles or abstracts were reviewed for details on BCG vaccination, concurrent vaccinated and unvaccinated groups, and TB outcome; 70 articles were reviewed in depth for method of vaccine allocation used to create comparable groups, equal surveillance and follow-up for recipient and concurrent control groups, and outcome measures of TB cases and/or deaths. Fourteen prospective trials and 12 case-control studies were included in the analysis. We recorded study design, age range of study population, number of patients enrolled, efficacy of vaccine, and items to assess the potential for bias in study design and diagnosis. At least two readers independently extracted data and evaluated validity. The relative risk (RR) or odds ratio (OR) of TB provided the measure of vaccine efficacy that we analyzed. The protective effect was then computed by 1-RR or 1-OR. A random-effects model estimated a weighted average RR or OR from those provided by the trials or case-control studies. In the trials, the RR of TB was 0.49 (95% confidence interval [CI], 0.34 to 0.70) for vaccine recipients compared with nonrecipients (protective effect of 51%). In the case-control studies, the OR for TB was 0.50 (95% CI, 0.39 to 0.64), or a 50% protective effect. Seven trials reporting tuberculous deaths showed a protective effect from BCG vaccine of 71% (RR, 0.29; 95% CI, 0.16 to 0.53), and five studies reporting on meningitis showed a protective effect from BCG vaccine of 64% (OR, 0.36; 95% CI, 0.18 to 0.70). Geographic latitude of the study site and study validity score explained 66% of the heterogeneity among trials in a random-effects regression model. On average, BCG vaccine significantly reduces the risk of TB by 50%. Protection is observed across many populations, study designs, and forms of TB. Age at vaccination did not enhance predictiveness of BCG efficacy. Protection against tuberculous death, meningitis, and disseminated disease is higher than for total TB cases, although this result may reflect reduced error in disease classification rather than greater BCG efficacy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The WHO 2014 Global tuberculosis report—further to go

                Bookmark

                Author and article information

                Contributors
                Journal
                Tuberculosis (Edinb)
                Tuberculosis (Edinb)
                Tuberculosis (Edinburgh, Scotland)
                Churchill Livingstone
                1472-9792
                1873-281X
                1 December 2016
                December 2016
                : 101
                : 174-190
                Affiliations
                [a ]Public Health England, Porton Down, Wiltshire, SP4 0JG, UK
                [b ]Churchill Hospital, Headington, Oxford, UK
                [c ]Colorado State University, Fort Collins, CO, USA
                Author notes
                []Corresponding author. sally.sharpe@ 123456phe.gov.uk
                Article
                S1472-9792(16)30198-6
                10.1016/j.tube.2016.09.004
                5120991
                27865390
                d6b20459-1d24-421a-a924-4492f0be6fba
                Crown Copyright © 2016 Published by Elsevier Ltd. All rights reserved.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 31 May 2016
                : 11 September 2016
                Categories
                Model Systems

                Respiratory medicine
                tuberculosis,bcg,biomarkers,non-human primate,aerosol challenge
                Respiratory medicine
                tuberculosis, bcg, biomarkers, non-human primate, aerosol challenge

                Comments

                Comment on this article