3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Peroxisome proliferator-activated receptors: new targets for the pharmacological modulation of macrophage gene expression and function :

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          The PPARalpha-leukotriene B4 pathway to inflammation control.

          Inflammation is a local immune response to 'foreign' molecules, infection and injury. Leukotriene B4, a potent chemotactic agent that initiates, coordinates, sustains and amplifies the inflammatory response, is shown to be an activating ligand for the transcription factor PPARalpha. Because PPARalpha regulates the oxidative degradation of fatty acids and their derivatives, like this lipid mediator, a feedback mechanism is proposed that controls the duration of an inflammatory response and the clearance of leukotriene B4 in the liver. Thus PPARalpha offers a new route to the development of anti- or pro-inflammatory reagents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling.

            Phagocytes such as neutrophils and macrophages produce reactive oxygen species (ROS) during phagocytosis or stimulation with a wide variety of agents through activation of nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase that is assembled at the plasma membrane from resident plasma membrane and cytosolic protein components. One of the subunits of the phagocyte NADPH oxidase is now recognized as a member of a family of NADPH oxidases, or NOX, present in cells other than phagocytes. Physiologic generation of ROS has been implicated in a variety of physiologic responses from transcriptional activation to cell proliferation and apoptosis. The increase in superoxide and hydrogen peroxide (H2O2) that results from stimulation of the NADPH oxidase is transient, in part due to the presence of the antioxidant enzymes, which return their concentrations to the prestimulation steady state level. Thus, the antioxidant enzymes may function in the "turn-off" phase of signal transduction by ROS. During its transient elevation, H2O2 may act as a modifier of key signaling enzymes through reversible oxidation of critical thiols. The rapid reaction of thiols with H2O2 when in their unprotonated state would provide a potential mechanism for the specificity that is necessary for physiologic cell signaling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway.

              Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that regulate lipid and glucose metabolism and cellular differentiation. PPAR-alpha and PPAR-gamma are both expressed in human macrophages where they exert anti-inflammatory effects. The activation of PPAR-alpha may promote foam-cell formation by inducing expression of the macrophage scavenger receptor CD36. This prompted us to investigate the influence of different PPAR-activators on cholesterol metabolism and foam-cell formation of human primary and THP-1 macrophages. Here we show that PPAR-alpha and PPAR-gamma activators do not influence acetylated low density lipoprotein-induced foam-cell formation of human macrophages. In contrast, PPAR-alpha and PPAR-gamma activators induce the expression of the gene encoding ABCA1, a transporter that controls apoAI-mediated cholesterol efflux from macrophages. These effects are likely due to enhanced expression of liver-x-receptor alpha, an oxysterol-activated nuclear receptor which induces ABCA1-promoter transcription. Moreover, PPAR-alpha and PPAR-gamma activators increase apoAI-induced cholesterol efflux from normal macrophages. In contrast, PPAR-alpha or PPAR-gamma activation does not influence cholesterol efflux from macrophages isolated from patients with Tangier disease, which is due to a genetic defect in ABCA1. Here we identify a regulatory role for PPAR-alpha and PPAR-gamma in the first steps of the reverse-cholesterol-transport pathway through the activation of ABCA1-mediated cholesterol efflux in human macrophages.
                Bookmark

                Author and article information

                Journal
                Current Opinion in Lipidology
                Current Opinion in Lipidology
                Ovid Technologies (Wolters Kluwer Health)
                0957-9672
                2003
                October 2003
                : 14
                : 5
                : 459-468
                Article
                10.1097/00041433-200310000-00006
                14501584
                d6ccdb72-3d89-4c4a-8179-29a3f6e76bd3
                © 2003
                History

                Comments

                Comment on this article