4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diagnostic Value of Salivary Markers in Neuropsychiatric Disorders

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A growing interest in the usability of saliva has been observed recently. Using saliva as a diagnostic material is possible because it contains a varied range of composites, organic and inorganic like proteins, carbohydrates, and lipids, which are secreted into saliva. Moreover, this applies to drugs and their metabolites. Saliva collection is noninvasive, and self-collection is possible. There is a lack of risk of injuries related to injection with needle, and it is generally safe. Human saliva has been successfully used, for example, in the diagnosis of many systemic diseases like cancers, autoimmunological diseases, infectious diseases (HIV, hepatitis, and malaria), and endocrinological diseases, as well as diseases of the gastrointestinal tract. Also, it is used in toxicological diagnostics, drug monitoring, and forensic medicine. The usefulness of saliva as a biological marker has also been extended to psychiatry. The specificity of mental illness and patients limits or prevents cooperation and diagnosis. In many cases, the use of saliva as a marker seems to be the most sensible choice.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          The epidemiology of autism spectrum disorders.

          Autism spectrum disorders (ASDs) are complex, lifelong, neurodevelopmental conditions of largely unknown cause. They are much more common than previously believed, second in frequency only to mental retardation among the serious developmental disorders. Although a heritable component has been demonstrated in ASD etiology, putative risk genes have yet to be identified. Environmental risk factors may also play a role, perhaps via complex gene-environment interactions, but no specific exposures with significant population effects are known. A number of endogenous biomarkers associated with autism risk have been investigated, and these may help identify significant biologic pathways that, in turn, will aid in the discovery of specific genes and exposures. Future epidemiologic research should focus on expanding population-based descriptive data on ASDs, exploring candidate risk factors in large well-designed studies incorporating both genetic and environmental exposure data and addressing possible etiologic heterogeneity in studies that can stratify case groups and consider alternate endophenotypes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuroendocrine pharmacology of stress.

            Exposure to hostile conditions initiates responses organized to enhance the probability of survival. These coordinated responses, known as stress responses, are composed of alterations in behavior, autonomic function and the secretion of multiple hormones. The activation of the renin-angiotensin system and the hypothalamic-pituitary-adrenocortical axis plays a pivotal role in the stress response. Neuroendocrine components activated by stressors include the increased secretion of epinephrine and norepinephrine from the sympathetic nervous system and adrenal medulla, the release of corticotropin-releasing factor (CRF) and vasopressin from parvicellular neurons into the portal circulation, and seconds later, the secretion of pituitary adrenocorticotropin (ACTH), leading to secretion of glucocorticoids by the adrenal gland. Corticotropin-releasing factor coordinates the endocrine, autonomic, behavioral and immune responses to stress and also acts as a neurotransmitter or neuromodulator in the amygdala, dorsal raphe nucleus, hippocampus and locus coeruleus, to integrate brain multi-system responses to stress. This review discussed the role of classical mediators of the stress response, such as corticotropin-releasing factor, vasopressin, serotonin (5-hydroxytryptamine or 5-HT) and catecholamines. Also discussed are the roles of other neuropeptides/neuromodulators involved in the stress response that have previously received little attention, such as substance P, vasoactive intestinal polypeptide, neuropeptide Y and cholecystokinin. Anxiolytic drugs of the benzodiazepine class and other drugs that affect catecholamine, GABA(A), histamine and serotonin receptors have been used to attenuate the neuroendocrine response to stressors. The neuroendocrine information for these drugs is still incomplete; however, they are a new class of potential antidepressant and anxiolytic drugs that offer new therapeutic approaches to treating anxiety disorders. The studies described in this review suggest that multiple brain mechanisms are responsible for the regulation of each hormone and that not all hormones are regulated by the same neural circuits. In particular, the renin-angiotensin system seems to be regulated by different brain mechanisms than the hypothalamic-pituitary-adrenal system. This could be an important survival mechanism to ensure that dysfunction of one neurotransmitter system will not endanger the appropriate secretion of hormones during exposure to adverse conditions. The measurement of several hormones to examine the mechanisms underlying the stress response and the effects of drugs and lesions on these responses can provide insight into the nature and location of brain circuits and neurotransmitter receptors involved in anxiety and stress.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Diagnostic Applications of Saliva— A Review

                Bookmark

                Author and article information

                Contributors
                Journal
                Dis Markers
                Dis. Markers
                DM
                Disease Markers
                Hindawi
                0278-0240
                1875-8630
                2019
                2 May 2019
                : 2019
                : 4360612
                Affiliations
                1Department of Psychiatry, Medical University of Bialystok, 16-070 Choroszcz, Poland
                2Department of Human Philosophy and Psychology, 15-295 Białystok, Poland
                3Department of Restorative Dentistry, Medical University of Bialystok, 15-276 Bialystok, Poland
                4Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland
                Author notes

                Academic Editor: Sunil Hwang

                Author information
                http://orcid.org/0000-0001-6334-9371
                http://orcid.org/0000-0002-7021-5133
                http://orcid.org/0000-0003-4562-0951
                http://orcid.org/0000-0001-5609-3187
                Article
                10.1155/2019/4360612
                6525852
                31191750
                d71f8ef3-e750-4a68-a1bc-a10748204582
                Copyright © 2019 Agnieszka Kułak-Bejda et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 September 2018
                : 19 February 2019
                Categories
                Review Article

                Comments

                Comment on this article