106
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Measuring functional connectivity using MEG: Methodology and comparison with fcMRI

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Functional connectivity (FC) between brain regions is thought to be central to the way in which the brain processes information. Abnormal connectivity is thought to be implicated in a number of diseases. The ability to study FC is therefore a key goal for neuroimaging. Functional connectivity (fc) MRI has become a popular tool to make connectivity measurements but the technique is limited by its indirect nature. A multimodal approach is therefore an attractive means to investigate the electrodynamic mechanisms underlying hemodynamic connectivity. In this paper, we investigate resting state FC using fcMRI and magnetoencephalography (MEG). In fcMRI, we exploit the advantages afforded by ultra high magnetic field. In MEG we apply envelope correlation and coherence techniques to source space projected MEG signals. We show that beamforming provides an excellent means to measure FC in source space using MEG data. However, care must be taken when interpreting these measurements since cross talk between voxels in source space can potentially lead to spurious connectivity and this must be taken into account in all studies of this type. We show good spatial agreement between FC measured independently using MEG and fcMRI; FC between sensorimotor cortices was observed using both modalities, with the best spatial agreement when MEG data are filtered into the β band. This finding helps to reduce the potential confounds associated with each modality alone: while it helps reduce the uncertainties in spatial patterns generated by MEG (brought about by the ill posed inverse problem), addition of electrodynamic metric confirms the neural basis of fcMRI measurements. Finally, we show that multiple MEG based FC metrics allow the potential to move beyond what is possible using fcMRI, and investigate the nature of electrodynamic connectivity. Our results extend those from previous studies and add weight to the argument that neural oscillations are intimately related to functional connectivity and the BOLD response.

          Research highlights

          ► The utility of beamforming as a source space projection algorithm for use with functional connectivity (FC) measurements is explored. ► Simulations are described and prove to be a robust methodology to eliminate spurious FC from source space MEG measurements. ► The spatial signature of resting state FC between left and right sensorimotor cortices can be measured independently using MEG and fMRI. ► Excellent agreement between motor cortex FC measured using both MEG and fcMRI. ► Multiple MEG FC metrics exploit the direct nature of MEG.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.

          An MRI time course of 512 echo-planar images (EPI) in resting human brain obtained every 250 ms reveals fluctuations in signal intensity in each pixel that have a physiologic origin. Regions of the sensorimotor cortex that were activated secondary to hand movement were identified using functional MRI methodology (FMRI). Time courses of low frequency (< 0.1 Hz) fluctuations in resting brain were observed to have a high degree of temporal correlation (P < 10(-3)) within these regions and also with time courses in several other regions that can be associated with motor function. It is concluded that correlation of low frequency fluctuations, which may arise from fluctuations in blood oxygenation or flow, is a manifestation of functional connectivity of the brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging.

            The majority of functional neuroscience studies have focused on the brain's response to a task or stimulus. However, the brain is very active even in the absence of explicit input or output. In this Article we review recent studies examining spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal of functional magnetic resonance imaging as a potentially important and revealing manifestation of spontaneous neuronal activity. Although several challenges remain, these studies have provided insight into the intrinsic functional architecture of the brain, variability in behaviour and potential physiological correlates of neurological and psychiatric disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Abnormal neural oscillations and synchrony in schizophrenia.

              Converging evidence from electrophysiological, physiological and anatomical studies suggests that abnormalities in the synchronized oscillatory activity of neurons may have a central role in the pathophysiology of schizophrenia. Neural oscillations are a fundamental mechanism for the establishment of precise temporal relationships between neuronal responses that are in turn relevant for memory, perception and consciousness. In patients with schizophrenia, the synchronization of beta- and gamma-band activity is abnormal, suggesting a crucial role for dysfunctional oscillations in the generation of the cognitive deficits and other symptoms of the disorder. Dysfunctional oscillations may arise owing to anomalies in the brain's rhythm-generating networks of GABA (gamma-aminobutyric acid) interneurons and in cortico-cortical connections.
                Bookmark

                Author and article information

                Journal
                Neuroimage
                Neuroimage
                Neuroimage
                Academic Press
                1053-8119
                1095-9572
                01 June 2011
                01 June 2011
                : 56
                : 3
                : 1082-1104
                Affiliations
                [a ]Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
                [b ]Wellcome Trust Centre for Neuroimaging, University College London, London, UK
                [c ]Biomagnetic Imaging Laboratory, Department of Radiology, University of California, San Francisco, USA
                [d ]Joint Graduate Group in Bioengineering, University of California, San Francisco and Berkeley, USA
                Author notes
                Article
                YNIMG8108
                10.1016/j.neuroimage.2011.02.054
                3224862
                21352925
                d727308f-5283-470c-a77e-9370c600190b
                © 2011 Elsevier Inc.

                This document may be redistributed and reused, subject to certain conditions.

                History
                : 24 August 2010
                : 21 January 2011
                : 17 February 2011
                Categories
                Article

                Neurosciences
                resting state,bold,fmri,imaginary coherence,envelope correlation,functional connectivity,meg,neural oscillations,7t,coherence

                Comments

                Comment on this article