18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Harmonizing FDG PET quantification while maintaining optimal lesion detection: prospective multicentre validation in 517 oncology patients

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Point-spread function (PSF) or PSF + time-of-flight (TOF) reconstruction may improve lesion detection in oncologic PET, but can alter quantitation resulting in variable standardized uptake values (SUVs) between different PET systems. This study aims to validate a proprietary software tool (EQ.PET) to harmonize SUVs across different PET systems independent of the reconstruction algorithm used.

          Methods

          NEMA NU2 phantom data were used to calculate the appropriate filter for each PSF or PSF+TOF reconstruction from three different PET systems, in order to obtain EANM compliant recovery coefficients. PET data from 517 oncology patients were reconstructed with a PSF or PSF+TOF reconstruction for optimal tumour detection and an ordered subset expectation maximization (OSEM3D) reconstruction known to fulfil EANM guidelines. Post-reconstruction, the proprietary filter was applied to the PSF or PSF+TOF data (PSF EQ or PSF+TOF EQ). SUVs for PSF or PSF+TOF and PSF EQ or PSF+TOF EQ were compared to SUVs for the OSEM3D reconstruction. The impact of potential confounders on the EQ.PET methodology including lesion and patient characteristics was studied, as was the adherence to imaging guidelines.

          Results

          For the 1380 tumour lesions studied, Bland-Altman analysis showed a mean ratio between PSF or PSF+TOF and OSEM3D of 1.46 (95 %CI: 0.86–2.06) and 1.23 (95 %CI: 0.95–1.51) for SUV max and SUV peak, respectively. Application of the proprietary filter improved these ratios to 1.02 (95 %CI: 0.88–1.16) and 1.04 (95 %CI: 0.92–1.17) for SUV max and SUV peak, respectively. The influence of the different confounding factors studied (lesion size, location, radial offset and patient’s BMI) was less than 5 %. Adherence to the European Association of Nuclear Medicine (EANM) guidelines for tumour imaging was good.

          Conclusion

          These data indicate that it is not necessary to sacrifice the superior lesion detection and image quality achieved by newer reconstruction techniques in the quest for harmonizing quantitative comparability between PET systems.

          Electronic supplementary material

          The online version of this article (doi:10.1007/s00259-015-3128-0) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Statistical methods for assessing agreement between two methods of clinical measurement.

          In clinical measurement comparison of a new measurement technique with an established one is often needed to see whether they agree sufficiently for the new to replace the old. Such investigations are often analysed inappropriately, notably by using correlation coefficients. The use of correlation is misleading. An alternative approach, based on graphical techniques and simple calculations, is described, together with the relation between this analysis and the assessment of repeatability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors.

            The purpose of this article is to review the status and limitations of anatomic tumor response metrics including the World Health Organization (WHO) criteria, the Response Evaluation Criteria in Solid Tumors (RECIST), and RECIST 1.1. This article also reviews qualitative and quantitative approaches to metabolic tumor response assessment with (18)F-FDG PET and proposes a draft framework for PET Response Criteria in Solid Tumors (PERCIST), version 1.0. PubMed searches, including searches for the terms RECIST, positron, WHO, FDG, cancer (including specific types), treatment response, region of interest, and derivative references, were performed. Abstracts and articles judged most relevant to the goals of this report were reviewed with emphasis on limitations and strengths of the anatomic and PET approaches to treatment response assessment. On the basis of these data and the authors' experience, draft criteria were formulated for PET tumor response to treatment. Approximately 3,000 potentially relevant references were screened. Anatomic imaging alone using standard WHO, RECIST, and RECIST 1.1 criteria is widely applied but still has limitations in response assessments. For example, despite effective treatment, changes in tumor size can be minimal in tumors such as lymphomas, sarcoma, hepatomas, mesothelioma, and gastrointestinal stromal tumor. CT tumor density, contrast enhancement, or MRI characteristics appear more informative than size but are not yet routinely applied. RECIST criteria may show progression of tumor more slowly than WHO criteria. RECIST 1.1 criteria (assessing a maximum of 5 tumor foci, vs. 10 in RECIST) result in a higher complete response rate than the original RECIST criteria, at least in lymph nodes. Variability appears greater in assessing progression than in assessing response. Qualitative and quantitative approaches to (18)F-FDG PET response assessment have been applied and require a consistent PET methodology to allow quantitative assessments. Statistically significant changes in tumor standardized uptake value (SUV) occur in careful test-retest studies of high-SUV tumors, with a change of 20% in SUV of a region 1 cm or larger in diameter; however, medically relevant beneficial changes are often associated with a 30% or greater decline. The more extensive the therapy, the greater the decline in SUV with most effective treatments. Important components of the proposed PERCIST criteria include assessing normal reference tissue values in a 3-cm-diameter region of interest in the liver, using a consistent PET protocol, using a fixed small region of interest about 1 cm(3) in volume (1.2-cm diameter) in the most active region of metabolically active tumors to minimize statistical variability, assessing tumor size, treating SUV lean measurements in the 1 (up to 5 optional) most metabolically active tumor focus as a continuous variable, requiring a 30% decline in SUV for "response," and deferring to RECIST 1.1 in cases that do not have (18)F-FDG avidity or are technically unsuitable. Criteria to define progression of tumor-absent new lesions are uncertain but are proposed. Anatomic imaging alone using standard WHO, RECIST, and RECIST 1.1 criteria have limitations, particularly in assessing the activity of newer cancer therapies that stabilize disease, whereas (18)F-FDG PET appears particularly valuable in such cases. The proposed PERCIST 1.0 criteria should serve as a starting point for use in clinical trials and in structured quantitative clinical reporting. Undoubtedly, subsequent revisions and enhancements will be required as validation studies are undertaken in varying diseases and treatments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0

              The aim of this guideline is to provide a minimum standard for the acquisition and interpretation of PET and PET/CT scans with [18F]-fluorodeoxyglucose (FDG). This guideline will therefore address general information about [18F]-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET/CT) and is provided to help the physician and physicist to assist to carrying out, interpret, and document quantitative FDG PET/CT examinations, but will concentrate on the optimisation of diagnostic quality and quantitative information.
                Bookmark

                Author and article information

                Contributors
                +33 231455268 , aide-n@chu-caen.fr
                Journal
                Eur J Nucl Med Mol Imaging
                Eur. J. Nucl. Med. Mol. Imaging
                European Journal of Nuclear Medicine and Molecular Imaging
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1619-7070
                1619-7089
                30 July 2015
                30 July 2015
                2015
                : 42
                : 13
                : 2072-2082
                Affiliations
                [ ]Nuclear Medicine Department, François Baclesse Cancer Centre, Caen, France
                [ ]Nuclear Medicine Department, University Hospital and EA3878 (GETBO) IFR 148, Brest, France
                [ ]Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne and University of Melbourne, Melbourne, Australia
                [ ]Nuclear Medicine Department, University Hospital, Avenue Côte de Nacre, 14000 Caen, France
                [ ]INSERM 1199, François Baclesse Cancer Centre, Caen, France
                [ ]Normandie University, Caen, France
                Article
                3128
                10.1007/s00259-015-3128-0
                4623085
                26219870
                d7efd776-901e-4007-8fe2-854f4fca8ceb
                © The Author(s) 2015

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 26 February 2015
                : 2 July 2015
                Categories
                Original Article
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2015

                Radiology & Imaging
                fdg pet/ct,quantification,harmonization,standardized uptake value,tumour imaging

                Comments

                Comment on this article