2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microplastics in Food: A Review on Analytical Methods and Challenges

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human exposure to microplastics contained in food has become a significant concern owing to the increasing accumulation of microplastics in the environment. In this paper, we summarize the presence of microplastics in food and the analytical methods used for isolation and identification of microplastics. Although a large number of studies on seafood such as fish and shellfish exist, estimating the overall human exposure to microplastics via food consumption is difficult owing to the lack of studies on other food items. Analytical methods still need to be optimized for appropriate recovery of microplastics in various food matrices, rendering a quantitative comparison of different studies challenging. In addition, microplastics could be added or removed from ingredients during processing or cooking. Thus, research on processed food is crucial to estimate the contribution of food to overall human microplastic consumption and to mitigate this exposure in the future.

          Related collections

          Most cited references141

          • Record: found
          • Abstract: found
          • Article: not found

          Microplastics in the marine environment.

          This review discusses the mechanisms of generation and potential impacts of microplastics in the ocean environment. Weathering degradation of plastics on the beaches results in their surface embrittlement and microcracking, yielding microparticles that are carried into water by wind or wave action. Unlike inorganic fines present in sea water, microplastics concentrate persistent organic pollutants (POPs) by partition. The relevant distribution coefficients for common POPs are several orders of magnitude in favour of the plastic medium. Consequently, the microparticles laden with high levels of POPs can be ingested by marine biota. Bioavailability and the efficiency of transfer of the ingested POPs across trophic levels are not known and the potential damage posed by these to the marine ecosystem has yet to be quantified and modelled. Given the increasing levels of plastic pollution of the oceans it is important to better understand the impact of microplastics in the ocean food web. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plastic debris in the open ocean.

            There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microplastics in bivalves cultured for human consumption.

              Microplastics are present throughout the marine environment and ingestion of these plastic particles (<1 mm) has been demonstrated in a laboratory setting for a wide array of marine organisms. Here, we investigate the presence of microplastics in two species of commercially grown bivalves: Mytilus edulis and Crassostrea gigas. Microplastics were recovered from the soft tissues of both species. At time of human consumption, M. edulis contains on average 0.36 ± 0.07 particles g(-1) (wet weight), while a plastic load of 0.47 ± 0.16 particles g(-1) ww was detected in C. gigas. As a result, the annual dietary exposure for European shellfish consumers can amount to 11,000 microplastics per year. The presence of marine microplastics in seafood could pose a threat to food safety, however, due to the complexity of estimating microplastic toxicity, estimations of the potential risks for human health posed by microplastics in food stuffs is not (yet) possible.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                15 September 2020
                September 2020
                : 17
                : 18
                : 6710
                Affiliations
                [1 ]Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea; jinwoo4671@ 123456gmail.com (J.-W.K.); thanhdat4196@ 123456gmail.com (T.D.P.); abhra@ 123456korea.ac.kr (A.T.)
                [2 ]FITI Testing & Research Institute, Cheongju 28116, Korea; skhong@ 123456fiti.re.kr (S.H.); shchun@ 123456fiti.re.kr (S.-H.C.); shlee03@ 123456fiti.re.kr (S.-H.L.); dykang@ 123456fiti.re.kr (D.-Y.K.)
                [3 ]Korea Institute of Analytical Science and Technology, Seoul 04790, Korea; kjy@ 123456kiast.co.kr (J.-Y.K.); ksb@ 123456kiast.co.kr (S.-B.K.); jh3370@ 123456naver.com (J.J.)
                Author notes
                [* ]Correspondence: junghwankwon@ 123456korea.ac.kr ; Tel.: +82-3290-3041
                Author information
                https://orcid.org/0000-0002-6341-7562
                https://orcid.org/0000-0002-6454-2787
                Article
                ijerph-17-06710
                10.3390/ijerph17186710
                7559051
                32942613
                d815d964-d057-474d-bb56-6f5aa616d1e2
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 August 2020
                : 11 September 2020
                Categories
                Review

                Public health
                microplastics,seafood,sea salt,density separation,ft-ir,digestion
                Public health
                microplastics, seafood, sea salt, density separation, ft-ir, digestion

                Comments

                Comment on this article