4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      AMPK regulation of Raptor and TSC2 mediate metformin effects on transcriptional control of anabolism and inflammation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here, Van Nostrand et al. investigated the mechanisms of action of the biguanide drug metformin by using a new Raptor AA mouse model, in which AMPK phospho-serine sites Ser722 and Ser792 of RAPTOR were mutated to alanine. The hepatic transcriptional response in mice on a high-fat diet treated with metformin was largely ablated by AMPK deficiency under the conditions examined, indicating the essential role of this kinase and its targets in metformin action in vivo.

          Abstract

          Despite being the frontline therapy for type 2 diabetes, the mechanisms of action of the biguanide drug metformin are still being discovered. In particular, the detailed molecular interplays between the AMPK and the mTORC1 pathway in the hepatic benefits of metformin are still ill defined. Metformin-dependent activation of AMPK classically inhibits mTORC1 via TSC/RHEB, but several lines of evidence suggest additional mechanisms at play in metformin inhibition of mTORC1. Here we investigated the role of direct AMPK-mediated serine phosphorylation of RAPTOR in a new Raptor AA mouse model, in which AMPK phospho-serine sites Ser722 and Ser792 of RAPTOR were mutated to alanine. Metformin treatment of primary hepatocytes and intact murine liver requires AMPK regulation of both RAPTOR and TSC2 to fully inhibit mTORC1, and this regulation is critical for both the translational and transcriptional response to metformin. Transcriptionally, AMPK and mTORC1 were both important for regulation of anabolic metabolism and inflammatory programs triggered by metformin treatment. The hepatic transcriptional response in mice on high-fat diet treated with metformin was largely ablated by AMPK deficiency under the conditions examined, indicating the essential role of this kinase and its targets in metformin action in vivo.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          mTOR signaling in growth control and disease.

          The mechanistic target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis. The pathway regulates many major cellular processes and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration. Here, we review recent advances in our understanding of the mTOR pathway and its role in health, disease, and aging. We further discuss pharmacological approaches to treat human pathologies linked to mTOR deregulation. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            mTOR at the nexus of nutrition, growth, ageing and disease

            The mTOR pathway integrates a diverse set of environmental cues, such as growth factor signals and nutritional status, to direct eukaryotic cell growth. Over the past two and a half decades, mapping of the mTOR signalling landscape has revealed that mTOR controls biomass accumulation and metabolism by modulating key cellular processes, including protein synthesis and autophagy. Given the pathway’s central role in maintaining cellular and physiological homeostasis, dysregulation of mTOR signalling has been implicated in metabolic disorders, neurodegeneration, cancer and ageing. In this Review, we highlight recent advances in our understanding of the complex regulation of the mTOR pathway and discuss its function in the context of physiology, human disease and pharmacological intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AMPK phosphorylation of raptor mediates a metabolic checkpoint.

              AMPK is a highly conserved sensor of cellular energy status that is activated under conditions of low intracellular ATP. AMPK responds to energy stress by suppressing cell growth and biosynthetic processes, in part through its inhibition of the rapamycin-sensitive mTOR (mTORC1) pathway. AMPK phosphorylation of the TSC2 tumor suppressor contributes to suppression of mTORC1; however, TSC2-deficient cells remain responsive to energy stress. Using a proteomic and bioinformatics approach, we sought to identify additional substrates of AMPK that mediate its effects on growth control. We report here that AMPK directly phosphorylates the mTOR binding partner raptor on two well-conserved serine residues, and this phosphorylation induces 14-3-3 binding to raptor. The phosphorylation of raptor by AMPK is required for the inhibition of mTORC1 and cell-cycle arrest induced by energy stress. These findings uncover a conserved effector of AMPK that mediates its role as a metabolic checkpoint coordinating cell growth with energy status.
                Bookmark

                Author and article information

                Journal
                Genes Dev
                Genes Dev
                genesdev
                genesdev
                GAD
                Genes & Development
                Cold Spring Harbor Laboratory Press
                0890-9369
                1549-5477
                1 October 2020
                : 34
                : 19-20
                : 1330-1344
                Affiliations
                [1 ]Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
                [2 ]Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92037, USA;
                [3 ]Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
                [4 ]Transgenic Core Facility, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
                Author notes
                Corresponding author: shaw@ 123456salk.edu
                Author information
                http://orcid.org/0000-0002-1555-8977
                Article
                8711660
                10.1101/gad.339895.120
                7528705
                32912901
                d966f557-ced8-4ca2-a4e5-2a0119545fee
                © 2020 Van Nostrand et al.; Published by Cold Spring Harbor Laboratory Press

                This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 29 April 2020
                : 12 August 2020
                Page count
                Pages: 15
                Funding
                Funded by: National Institutes of Health , open-funder-registry 10.13039/100000002;
                Award ID: R01-DK080425
                Award ID: R35-CA220538
                Award ID: P01-CA120964
                Funded by: Damon Runyan Cancer Research Foundation
                Award ID: DRG 2219-15
                Categories
                Research Paper

                ampk,mtor,raptor,tsc2,metformin,stat3
                ampk, mtor, raptor, tsc2, metformin, stat3

                Comments

                Comment on this article