0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of color variation and physiological state on ascidian microbiomes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ascidians, known for their color variation, host species‐specific microbial symbiont communities. Some ascidians can also transition into a nonfiltering (resting) physiological state. Recent studies suggest that the microbial symbiont communities may vary across different physiological states and color morphs of the host. The colonial ascidian, Polyclinum constellatum, which exhibits several color morphs in the Caribbean Sea, periodically ceases its filtering activity. To investigate if color variation in P. constellatum is indicative of sibling speciation, we sequenced fragments of the ribosomal 18S rRNA and the mitochondrial cytochrome oxidase subunit I genes. Additionally, we sequenced a fragment of the 16S rRNA gene to characterize the microbial communities of two common color morphs (red and green) in colonies that were either actively filtering (active) or nonfiltering (resting). Phylogenetic analyses of both ascidian genes resulted in well‐supported monophyletic clades encompassing all color variants of P. constellatum. Interestingly, no significant differences were observed among the microbial communities of the green and red morphs, suggesting that color variation in this species is a result of intraspecific variation. However, the host's physiological state significantly influenced the microbial community structure. Nonfiltering (resting) colonies hosted higher relative abundances of Kiloniella (Alphaproteobacteria) and Fangia (Gammaproteobacteria), while filtering colonies hosted more Reugeria (Alphaproteobacteria) and Endozoicomonas (Gammaproteobacteria). This study demonstrates that microbial symbiont communities serve as reliable indicators of the taxonomic state of their host and are strongly influenced by the host's feeding condition.

          Abstract

          Microbial symbiont communities are reliable indicators of the taxonomic state of their host and are strongly tied to their host's physiological condition.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.

          The Ribosomal Database Project (RDP) Classifier, a naïve Bayesian classifier, can rapidly and accurately classify bacterial 16S rRNA sequences into the new higher-order taxonomy proposed in Bergey's Taxonomic Outline of the Prokaryotes (2nd ed., release 5.0, Springer-Verlag, New York, NY, 2004). It provides taxonomic assignments from domain to genus, with confidence estimates for each assignment. The majority of classifications (98%) were of high estimated confidence (> or = 95%) and high accuracy (98%). In addition to being tested with the corpus of 5,014 type strain sequences from Bergey's outline, the RDP Classifier was tested with a corpus of 23,095 rRNA sequences as assigned by the NCBI into their alternative higher-order taxonomy. The results from leave-one-out testing on both corpora show that the overall accuracies at all levels of confidence for near-full-length and 400-base segments were 89% or above down to the genus level, and the majority of the classification errors appear to be due to anomalies in the current taxonomies. For shorter rRNA segments, such as those that might be generated by pyrosequencing, the error rate varied greatly over the length of the 16S rRNA gene, with segments around the V2 and V4 variable regions giving the lowest error rates. The RDP Classifier is suitable both for the analysis of single rRNA sequences and for the analysis of libraries of thousands of sequences. Another related tool, RDP Library Compare, was developed to facilitate microbial-community comparison based on 16S rRNA gene sequence libraries. It combines the RDP Classifier with a statistical test to flag taxa differentially represented between samples. The RDP Classifier and RDP Library Compare are available online at http://rdp.cme.msu.edu/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.

            The ongoing revolution in high-throughput sequencing continues to democratize the ability of small groups of investigators to map the microbial component of the biosphere. In particular, the coevolution of new sequencing platforms and new software tools allows data acquisition and analysis on an unprecedented scale. Here we report the next stage in this coevolutionary arms race, using the Illumina GAIIx platform to sequence a diverse array of 25 environmental samples and three known "mock communities" at a depth averaging 3.1 million reads per sample. We demonstrate excellent consistency in taxonomic recovery and recapture diversity patterns that were previously reported on the basis of metaanalysis of many studies from the literature (notably, the saline/nonsaline split in environmental samples and the split between host-associated and free-living communities). We also demonstrate that 2,000 Illumina single-end reads are sufficient to recapture the same relationships among samples that we observe with the full dataset. The results thus open up the possibility of conducting large-scale studies analyzing thousands of samples simultaneously to survey microbial communities at an unprecedented spatial and temporal resolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.

              mothur aims to be a comprehensive software package that allows users to use a single piece of software to analyze community sequence data. It builds upon previous tools to provide a flexible and powerful software package for analyzing sequencing data. As a case study, we used mothur to trim, screen, and align sequences; calculate distances; assign sequences to operational taxonomic units; and describe the alpha and beta diversity of eight marine samples previously characterized by pyrosequencing of 16S rRNA gene fragments. This analysis of more than 222,000 sequences was completed in less than 2 h with a laptop computer.
                Bookmark

                Author and article information

                Contributors
                lopezlegentils@uncw.edu
                Journal
                Microbiologyopen
                Microbiologyopen
                10.1002/(ISSN)2045-8827
                MBO3
                MicrobiologyOpen
                John Wiley and Sons Inc. (Hoboken )
                2045-8827
                13 March 2024
                April 2024
                : 13
                : 2 ( doiID: 10.1002/mbo3.v13.2 )
                : e1405
                Affiliations
                [ 1 ] Department of Biology & Marine Biology, Center for Marine Science University of North Carolina Wilmington Wilmington North Carolina USA
                Author notes
                [*] [* ] Correspondence Susanna López‐Legentil, Department of Biology & Marine Biology, Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K. Moss Ln, Wilmington, NC, USA.

                Email: lopezlegentils@ 123456uncw.edu

                Author information
                http://orcid.org/0000-0001-9276-0020
                http://orcid.org/0000-0001-8737-6729
                Article
                MBO31405
                10.1002/mbo3.1405
                10938030
                38481089
                da544742-1b37-45a0-b81f-895fbe2ddc9c
                © 2024 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 January 2024
                : 20 November 2023
                : 29 February 2024
                Page count
                Figures: 6, Tables: 6, Pages: 12, Words: 7465
                Funding
                Funded by: Puerto Rico Sea Grant, University of Puerto Rico , doi 10.13039/100005791;
                Award ID: R/103‐1‐18
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                April 2024
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.3.9 mode:remove_FC converted:14.03.2024

                Microbiology & Virology
                16s rrna,microbial communities,phenotypic plasticity,phylogeny,tunicate
                Microbiology & Virology
                16s rrna, microbial communities, phenotypic plasticity, phylogeny, tunicate

                Comments

                Comment on this article