Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Safinamide's potential in treating nondystrophic myotonias: Inhibition of skeletal muscle voltage-gated sodium channels and skeletal muscle hyperexcitability in vitro and in vivo.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The antiarrhythmic sodium-channel blocker mexiletine is used to treat patients with myotonia. However, around 30% of patients do not benefit from mexiletine due to poor tolerability or suboptimal response. Safinamide is an add-on therapy to levodopa for Parkinson's disease. In addition to MAOB inhibition, safinamide inhibits neuronal sodium channels, conferring anticonvulsant activity in models of epilepsy. Here, we investigated the effects of safinamide on skeletal muscle hNav1.4 sodium channels and in models of myotonia, in-vitro and in-vivo. Using patch-clamp, we showed that safinamide reversibly inhibited sodium currents in HEK293T cells transfected with hNav1.4. At the holding potential (hp) of -120 mV, the half-maximum inhibitory concentrations (IC50) were 160 and 33 μM at stimulation frequencies of 0.1 and 10 Hz, respectively. The calculated affinity constants of safinamide were dependent on channel state: 420 μM for closed channels and 9 μM for fast-inactivated channels. The p.F1586C mutation in hNav1.4 greatly impaired safinamide inhibition, suggesting that the drug binds to the local anesthetic receptor site in the channel pore. In a condition mimicking myotonia, i.e. hp. of -90 mV and 50-Hz stimulation, safinamide inhibited INa with an IC50 of 6 μM, being two-fold more potent than mexiletine. Using the two-intracellular microelectrodes current-clamp method, action potential firing was recorded in vitro in rat skeletal muscle fibers in presence of the chloride channel blocker, 9-anthracene carboxylic acid (9-AC), to increase excitability. Safinamide counteracted muscle fiber hyperexcitability with an IC50 of 13 μM. In vivo, oral safinamide was tested in the rat model of myotonia. In this model, intraperitoneal injection of 9-AC greatly increased the time of righting reflex (TRR) due to development of muscle stiffness. Safinamide counteracted 9-AC induced TRR increase with an ED50 of 1.2 mg/kg, which is 7 times lower than that previously determined for mexiletine. In conclusion, safinamide is a potent voltage and frequency dependent blocker of skeletal muscle sodium channels. Accordingly, the drug was able to counteract abnormal muscle hyperexcitability induced by 9-AC, both in vitro and in vivo. Thus, this study suggests that safinamide may have potential in treating myotonia and warrants further preclinical and human studies to fully evaluate this possibility.

          Related collections

          Author and article information

          Journal
          Exp Neurol
          Experimental neurology
          Elsevier BV
          1090-2430
          0014-4886
          June 2020
          : 328
          Affiliations
          [1 ] Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy. Electronic address: jeanfrancois.desaphy@uniba.it.
          [2 ] Department of Pharmacy & Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
          [3 ] Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy.
          [4 ] Open R&D Department, Zambon S.p.A., Bresso, MI, Italy.
          Article
          S0014-4886(20)30118-7
          10.1016/j.expneurol.2020.113287
          32205118
          dad59342-0205-4522-b2e8-833b9096ca1b
          Copyright © 2020 Elsevier Inc. All rights reserved.
          History

          Safinamide,Patch-clamp,Myotonia,Muscle excitability,In vivo model,Current-clamp,Voltage-gated sodium channels

          Comments

          Comment on this article