5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TRAP1 attenuates H9C2 myocardial cell injury induced by extracellular acidification via the inhibition of MPTP opening

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extracellular acidification leads to cardiac dysfunction in numerous diseases. Mitochondrial dysfunction plays an important role in this process. However, the mechanisms through which extracellular acidification induces mitochondrial dysfunction remain unclear. Tumor necrosis factor receptor-associated protein 1 (TRAP1) maintains mitochondrial function and cell viability in tumor and non-tumor cells. In the present study, extracellular acidification was found to induce H9C2 cell apoptosis, mitochondrial dysfunction and TRAP1 expression. The overexpression of TRAP1 attenuated H9C2 cell injury, while the silencing of TRAP1 exacerbated it. Moreover, mitochondrial permeability transition pore (MPTP) opening, which is associated with the mitochondrial apoptotic pathway and cell death, was also increased in acidic medium. The overexpression of TRAP1 inhibited MPTP opening, while the silencing of TRAP1 promoted it. The protective effect of TRAP1 on cardiomyocytes was abolished by the addition of a specific MPTP opening promoter. Similarly, a specific MPTP opening inhibitor reversed cell injury by silencing TRAP1. Taken together, the findings of the present study demonstrate that TRAP1 attenuates H9C2 cell injury induced by extracellular acidification by inhibiting MPTP opening.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells

          Inhibition of complex I (CI) of the mitochondrial respiratory chain by BAY 87-2243 (‘BAY') triggers death of BRAFV600E melanoma cell lines and inhibits in vivo tumor growth. Here we studied the mechanism by which this inhibition induces melanoma cell death. BAY treatment depolarized the mitochondrial membrane potential (Δψ), increased cellular ROS levels, stimulated lipid peroxidation and reduced glutathione levels. These effects were paralleled by increased opening of the mitochondrial permeability transition pore (mPTP) and stimulation of autophagosome formation and mitophagy. BAY-induced cell death was not due to glucose shortage and inhibited by the antioxidant α-tocopherol and the mPTP inhibitor cyclosporin A. Tumor necrosis factor receptor-associated protein 1 (TRAP1) overexpression in BAY-treated cells lowered ROS levels and inhibited mPTP opening and cell death, whereas the latter was potentiated by TRAP1 knockdown. Knockdown of autophagy-related 5 (ATG5) inhibited the BAY-stimulated autophagosome formation, cellular ROS increase and cell death. Knockdown of phosphatase and tensin homolog-induced putative kinase 1 (PINK1) inhibited the BAY-induced Δψ depolarization, mitophagy stimulation, ROS increase and cell death. Dynamin-related protein 1 (Drp1) knockdown induced mitochondrial filamentation and inhibited BAY-induced cell death. The latter was insensitive to the pancaspase inhibitor z-VAD-FMK, but reduced by necroptosis inhibitors (necrostatin-1, necrostatin-1s)) and knockdown of key necroptosis proteins (receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and mixed lineage kinase domain-like (MLKL)). BAY-induced cell death was also reduced by the ferroptosis inhibitor ferrostatin-1 and overexpression of the ferroptosis-inhibiting protein glutathione peroxidase 4 (GPX4). This overexpression also inhibited the BAY-induced ROS increase and lipid peroxidation. Conversely, GPX4 knockdown potentiated BAY-induced cell death. We propose a chain of events in which: (i) CI inhibition induces mPTP opening and Δψ depolarization, that (ii) stimulate autophagosome formation, mitophagy and an associated ROS increase, leading to (iii) activation of combined necroptotic/ferroptotic cell death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiological and pathological roles of the mitochondrial permeability transition pore in the heart.

            Prolonged mitochondrial permeability transition pore (MPTP) opening results in mitochondrial energetic dysfunction, organelle swelling, rupture, and typically a type of necrotic cell death. However, acute opening of the MPTP has a critical physiologic role in regulating mitochondrial Ca(2+) handling and metabolism. Despite the physiological and pathological roles that the MPTP orchestrates, the proteins that comprise the pore itself remain an area of ongoing investigation. Here, we will discuss the molecular composition of the MPTP and its role in regulating cardiac physiology and disease. A better understanding of MPTP structure and function will likely suggest novel cardioprotective therapeutic approaches.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolic acidosis: pathophysiology, diagnosis and management.

              Metabolic acidosis is characterized by a primary reduction in serum bicarbonate (HCO(3)(-)) concentration, a secondary decrease in the arterial partial pressure of carbon dioxide (PaCO(2)) of approximately 1 mmHg for every 1 mmol/l fall in serum HCO(3)(-) concentration, and a reduction in blood pH. Acute forms (lasting minutes to several days) and chronic forms (lasting weeks to years) of the disorder can occur, for which the underlying cause/s and resulting adverse effects may differ. Acute forms of metabolic acidosis most frequently result from the overproduction of organic acids such as ketoacids or lactic acid; by contrast, chronic metabolic acidosis often reflects bicarbonate wasting and/or impaired renal acidification. The calculation of the serum anion gap, calculated as [Na(+)] - ([HCO(3)(-)] + [Cl(-)]), aids diagnosis by classifying the disorders into categories of normal (hyperchloremic) anion gap or elevated anion gap. These categories can overlap, however. Adverse effects of acute metabolic acidosis primarily include decreased cardiac output, arterial dilatation with hypotension, altered oxygen delivery, decreased ATP production, predisposition to arrhythmias, and impairment of the immune response. The main adverse effects of chronic metabolic acidosis are increased muscle degradation and abnormal bone metabolism. Using base to treat acute metabolic acidosis is controversial because of a lack of definitive benefit and because of potential complications. By contrast, the administration of base for the treatment of chronic metabolic acidosis is associated with improved cellular function and few complications.
                Bookmark

                Author and article information

                Journal
                Int J Mol Med
                Int. J. Mol. Med
                IJMM
                International Journal of Molecular Medicine
                D.A. Spandidos
                1107-3756
                1791-244X
                August 2020
                04 June 2020
                04 June 2020
                : 46
                : 2
                : 663-674
                Affiliations
                [1 ]Departments of Endocrinology
                [2 ]Departments of Nephrology
                [3 ]Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655
                [4 ]Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong 510632, P.R. China
                Author notes
                Correspondence to: Professor Tongfeng Zhao, Department of Endocrinology, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Erheng Road of Yuancun, Tianhe, Guangzhou, Guangdong 510655, P.R. China E-mail: ztfzxy71@ 123456163.com
                [*]

                Contributed equally

                Article
                ijmm-46-02-0663
                10.3892/ijmm.2020.4631
                7307819
                32626957
                db96d83b-7793-4196-bbd9-3e1b0af65728
                Copyright: © Zhang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 08 December 2019
                : 14 May 2020
                Categories
                Articles

                tnf receptor-associated protein 1,extracellular acidification,cell apoptosis,mitochondrial function,mitochondrial permeability transition pore

                Comments

                Comment on this article