7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Polycaprolactone/starch composite: Fabrication, structure, properties, and applications

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interests in the use of biodegradable polymers as biomaterials have grown. Among the different polymeric composites currently available, the blend of starch and polycaprolactone (PCL) has received the most attention since the 1980s. Novamont is the first company that manufactured a PCL/starch (SPCL) composite under the trademark Mater-Bi®. The properties of PCL (a synthetic, hydrophobic, flexible, expensive polymer with a low degradation rate) and starch (a natural, hydrophilic, stiff, abundant polymer with a high degradation rate) blends are interesting because of the composite components have completely different structures and characteristics. PCL can adjust humidity sensitivity of starch as a biomaterial; while starch can enhance the low biodegradation rate of PCL. Thus, by appropriate blending, SPCL can overcome important limitations of both PCL and starch components and promote controllable behavior in terms of mechanical properties and degradation which make it suitable for many biomedical applications. This article reviewed the different fabrication and modification methods of the SPCL composite; different properties such as structural, physical, and chemical as well as degradation behavior; and different applications as biomaterials.

          Related collections

          Most cited references163

          • Record: found
          • Abstract: not found
          • Article: not found

          Biodegradable polymers as biomaterials

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synthetic biodegradable polymers as orthopedic devices

            Polymer scientists, working closely with those in the device and medical fields, have made tremendous advances over the past 30 years in the use of synthetic materials in the body. In this article we will focus on properties of biodegradable polymers which make them ideally suited for orthopedic applications where a permanent implant is not desired. The materials with the greatest history of use are the poly(lactides) and poly(glycolides), and these will be covered in specific detail. The chemistry of the polymers, including synthesis and degradation, the tailoring of properties by proper synthetic controls such as copolymer composition, special requirements for processing and handling, and mechanisms of biodegradation will be covered. An overview of biocompatibility and approved devices of particular interest in orthopedics are also covered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling.

              A number of different processing techniques have been developed to design and fabricate three-dimensional (3D) scaffolds for tissue-engineering applications. The imperfection of the current techniques has encouraged the use of a rapid prototyping technology known as fused deposition modeling (FDM). Our results show that FDM allows the design and fabrication of highly reproducible bioresorbable 3D scaffolds with a fully interconnected pore network. The mechanical properties and in vitro biocompatibility of polycaprolactone scaffolds with a porosity of 61 +/- 1% and two matrix architectures were studied. The honeycomb-like pores had a size falling within the range of 360 x 430 x 620 microm. The scaffolds with a 0/60/120 degrees lay-down pattern had a compressive stiffness and a 1% offset yield strength in air of 41.9 +/- 3.5 and 3.1 +/- 0.1 MPa, respectively, and a compressive stiffness and a 1% offset yield strength in simulated physiological conditions (a saline solution at 37 degrees C) of 29.4 +/- 4.0 and 2.3 +/- 0.2 MPa, respectively. In comparison, the scaffolds with a 0/72/144/36/108 degrees lay-down pattern had a compressive stiffness and a 1% offset yield strength in air of 20.2 +/- 1.7 and 2.4 +/- 0.1 MPa, respectively, and a compressive stiffness and a 1% offset yield strength in simulated physiological conditions (a saline solution at 37 degrees C) of 21.5 +/- 2.9 and 2.0 +/- 0.2 MPa, respectively. Statistical analysis confirmed that the five-angle scaffolds had significantly lower stiffness and 1% offset yield strengths under compression loading than those with a three-angle pattern under both testing conditions (p < or = 0.05). The obtained stress-strain curves for both scaffold architectures demonstrate the typical behavior of a honeycomb structure undergoing deformation. In vitro studies were conducted with primary human fibroblasts and periosteal cells. Light, environmental scanning electron, and confocal laser microscopy as well as immunohistochemistry showed cell proliferation and extracellular matrix production on the polycaprolactone surface in the 1st culturing week. Over a period of 3-4 weeks in a culture, the fully interconnected scaffold architecture was completely 3D-filled by cellular tissue. Our cell culture study shows that fibroblasts and osteoblast-like cells can proliferate, differentiate, and produce a cellular tissue in an entirely interconnected 3D polycaprolactone matrix. Copyright 2001 John Wiley & Sons, Inc.
                Bookmark

                Author and article information

                Journal
                Journal of Biomedical Materials Research Part A
                J. Biomed. Mater. Res.
                Wiley
                15493296
                July 2015
                July 2015
                December 03 2014
                : 103
                : 7
                : 2482-2498
                Affiliations
                [1 ]Department of Biomedical Engineering; Faculty of Engineering; University of Malaya; 50603 Kuala Lumpur Malaysia
                [2 ]Orthopedic Research Center; Mashhad University of Medical Science; Mashhad Iran
                [3 ]Department of Biomedical Engineering; Amirkabir University of Technology; 15914 Tehran Iran
                Article
                10.1002/jbm.a.35371
                25407786
                dba04266-02d6-4314-a9d8-b942b95c5964
                © 2014

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article