53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbial Communities of the Upper Respiratory Tract and Otitis Media in Children

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Streptococcus pneumoniae asymptomatically colonizes the upper respiratory tract of children and is a frequent cause of otitis media. Patterns of microbial colonization likely influence S. pneumoniae colonization and otitis media susceptibility. This study compared microbial communities in children with and without otitis media. Nasal swabs and clinical and demographic data were collected in a cross-sectional study of Philadelphia, PA, children (6 to 78 months) ( n = 108) during the 2008-2009 winter respiratory virus season. Swabs were cultured for S. pneumoniae. DNA was extracted from the swabs; 16S rRNA gene hypervariable regions (V1 and V2) were PCR amplified and sequenced by Roche/454 Life Sciences pyrosequencing. Microbial communities were described using the Shannon diversity and evenness indices. Principal component analysis (PCA) was used to group microbial community taxa into four factors representing correlated taxa. Of 108 children, 47 (44%) were colonized by S. pneumoniae, and 25 (23%) were diagnosed with otitis media. Microbial communities with S. pneumoniae were significantly less diverse and less even. Two PCA factors were associated with a decreased risk of pneumococcal colonization and otitis media, as follows: one factor included potentially protective flora ( Corynebacterium and Dolosigranulum), and the other factor included Propionibacterium, Lactococcus, and Staphylococcus. The remaining two PCA factors were associated with an increased risk of otitis media. One factor included Haemophilus, and the final factor included Actinomyces, Rothia, Neisseria, and Veillonella. Generally, these taxa are not considered otitis media pathogens but may be important in the causal pathway. Increased understanding of upper respiratory tract microbial communities will contribute to the development of otitis media treatment and prevention strategies.

          IMPORTANCE

          Otitis media (middle ear infection) is the most common reason for pediatric sick visits in the United States. Streptococcus pneumoniae is a leading otitis media pathogen. S. pneumoniae must colonize the upper respiratory tract and compete with a complex community of nonpathogenic bacteria before infecting the middle ear. We compared microbial communities in the upper respiratory tract of children who had otitis media and those who did not. Members of the normal flora, i.e., Corynebacterium and Dolosigranulum, were protective for S. pneumoniae colonization and otitis media. As expected, the genera Haemophilus was associated with otitis media. Surprisingly, Actinomyces, Rothia, Neisseria, and Veillonella were associated with an increased risk of otitis media. These bacteria are not otitis media pathogens but may be associated with antibiotic use or involved in the causal pathway to disease. Increased understanding of upper respiratory tract microbial communities will lead to new ways to prevent middle ear infections, including probiotics.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex.

          We constructed error-correcting DNA barcodes that allow one run of a massively parallel pyrosequencer to process up to 1,544 samples simultaneously. Using these barcodes we processed bacterial 16S rRNA gene sequences representing microbial communities in 286 environmental samples, corrected 92% of sample assignment errors, and thus characterized nearly as many 16S rRNA genes as have been sequenced to date by Sanger sequencing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative Analysis of Human Gut Microbiota by Barcoded Pyrosequencing

            Humans host complex microbial communities believed to contribute to health maintenance and, when in imbalance, to the development of diseases. Determining the microbial composition in patients and healthy controls may thus provide novel therapeutic targets. For this purpose, high-throughput, cost-effective methods for microbiota characterization are needed. We have employed 454-pyrosequencing of a hyper-variable region of the 16S rRNA gene in combination with sample-specific barcode sequences which enables parallel in-depth analysis of hundreds of samples with limited sample processing. In silico modeling demonstrated that the method correctly describes microbial communities down to phylotypes below the genus level. Here we applied the technique to analyze microbial communities in throat, stomach and fecal samples. Our results demonstrate the applicability of barcoded pyrosequencing as a high-throughput method for comparative microbial ecology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accurate determination of microbial diversity from 454 pyrosequencing data.

              We present an algorithm, PyroNoise, that clusters the flowgrams of 454 pyrosequencing reads using a distance measure that models sequencing noise. This infers the true sequences in a collection of amplicons. We pyrosequenced a known mixture of microbial 16S rDNA sequences extracted from a lake and found that without noise reduction the number of operational taxonomic units is overestimated but using PyroNoise it can be accurately calculated.
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                1 February 2011
                Jan-Feb 2011
                : 2
                : 1
                : e00245-10
                Affiliations
                Yale School of Public Health, Yale University School of Medicine, New Haven, Connecticut, USA [a ];
                Departments of Medicine and Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA [b ];
                Yale University School of Nursing, New Haven, Connecticut, USA [c ]; and
                Department of Molecular Biophysics and Biochemistry and the W.M. Keck Foundation, Biotechnology Resource Laboratory, Yale University, New Haven, Connecticut, USA [d ]
                Author notes
                Address correspondence to Melinda M. Pettigrew, Melinda.Pettigrew@ 123456yale.edu .

                Editor James Tiedje, Michigan State University

                Article
                mBio00245-10
                10.1128/mBio.00245-10
                3031303
                21285435
                dbf522dd-0594-4b60-8d21-977934bd2168
                Copyright © 2011 Laufer et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 September 2010
                : 4 January 2011
                Page count
                Pages: 6
                Categories
                Research Article

                Life sciences
                Life sciences

                Comments

                Comment on this article