14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lactoferrin ameliorates dopaminergic neurodegeneration and motor deficits in MPTP-treated mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brain iron accumulation is common in patients with Parkinson's disease (PD). Iron chelators have been investigated for their ability to prevent neurodegenerative diseases with features of iron overload. Given the non-trivial side effects of classical iron chelators, lactoferrin (Lf), a multifunctional iron-binding globular glycoprotein, was screened to identify novel neuroprotective pathways against dopaminergic neuronal impairment. We found that Lf substantially ameliorated PD-like motor dysfunction in the subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. We further showed that Lf could alleviate MPTP-triggered apoptosis of DA neurons, neuroinflammation, and histological alterations. As expected, we also found that Lf suppressed MPTP-induced excessive iron accumulation and the upregulation of divalent metal transporter (DMT1) and transferrin receptor (TFR), which is the main intracellular iron regulation protein, and subsequently improved the activity of several antioxidant enzymes. We probed further and determined that the neuroprotection provided by Lf was involved in the upregulated levels of brain-derived neurotrophic factor (BDNF), hypoxia-inducible factor 1α (HIF-1α) and its downstream protein, accompanied by the activation of extracellular regulated protein kinases (ERK) and cAMP response element binding protein (CREB), as well as decreased phosphorylation of c-Jun N-terminal kinase (JNK) and mitogen activated protein kinase (MAPK)/P38 kinase in vitro and in vivo. Our findings suggest that Lf may be an alternative safe drug in ameliorating MPTP-induced brain abnormalities and movement disorder.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Targeting chelatable iron as a therapeutic modality in Parkinson's disease.

          The pathophysiological role of iron in Parkinson's disease (PD) was assessed by a chelation strategy aimed at reducing oxidative damage associated with regional iron deposition without affecting circulating metals. Translational cell and animal models provided concept proofs and a delayed-start (DS) treatment paradigm, the basis for preliminary clinical assessments. For translational studies, we assessed the effect of oxidative insults in mice systemically prechelated with deferiprone (DFP) by following motor functions, striatal dopamine (HPLC and MRI-PET), and brain iron deposition (relaxation-R2*-MRI) aided by spectroscopic measurements of neuronal labile iron (with fluorescence-sensitive iron sensors) and oxidative damage by markers of protein, lipid, and DNA modification. DFP significantly reduced labile iron and biological damage in oxidation-stressed cells and animals, improving motor functions while raising striatal dopamine. For a pilot, double-blind, placebo-controlled randomized clinical trial, early-stage Parkinson's patients on stabilized dopamine regimens enrolled in a 12-month single-center study with DFP (30 mg/kg/day). Based on a 6-month DS paradigm, early-start patients (n=19) compared to DS patients (n=18) (37/40 completed) responded significantly earlier and sustainably to treatment in both substantia nigra iron deposits (R2* MRI) and Unified Parkinson's Disease Rating Scale motor indicators of disease progression (p<0.03 and p<0.04, respectively). Apart from three rapidly resolved neutropenia cases, safety was maintained throughout the trial. A moderate iron chelation regimen that avoids changes in systemic iron levels may constitute a novel therapeutic modality for PD. The therapeutic features of a chelation modality established in translational models and in pilot clinical trials warrant comprehensive evaluation of symptomatic and/or disease-modifying potential of chelation in PD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice

            Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by neurofibrillary tangles (NFTs) composed of Tau protein. α-Lipoic acid (LA) has been found to stabilize the cognitive function of AD patients, and animal study findings have confirmed its anti-amyloidogenic properties. However, the underlying mechanisms remain unclear, especially with respect to the ability of LA to control Tau pathology and neuronal damage. Here, we found that LA supplementation effectively inhibited the hyperphosphorylation of Tau at several AD-related sites, accompanied by reduced cognitive decline in P301S Tau transgenic mice. Furthermore, we found that LA not only inhibited the activity of calpain1, which has been associated with tauopathy development and neurodegeneration via modulating the activity of several kinases, but also significantly decreased the calcium content of brain tissue in LA-treated mice. Next, we screened for various modes of neural cell death in the brain tissue of LA-treated mice. We found that caspase-dependent apoptosis was potently inhibited, whereas autophagy did not show significant changes after LA supplementation. Interestingly, Tau-induced iron overload, lipid peroxidation, and inflammation, which are involved in ferroptosis, were significantly blocked by LA administration. These results provide compelling evidence that LA plays a role in inhibiting Tau hyperphosphorylation and neuronal loss, including ferroptosis, through several pathways, suggesting that LA may be a potential therapy for tauopathies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lactoferrin a multiple bioactive protein: An overview ☆

              Background Lactoferrin (Lf) is an 80 kDa iron-binding glycoprotein of the transferrin family. It is abundant in milk and in most biological fluids and is a cell-secreted molecule that bridges innate and adaptive immune function in mammals. Its protective effects range from anticancer, anti-inflammatory and immune modulator activities to antimicrobial activities against a large number of microorganisms. This wide range of activities is made possible by mechanisms of action involving not only the capacity of Lf to bind iron but also interactions of Lf with molecular and cellular components of both hosts and pathogens. Scope of review This review summarizes the activities of Lf, its regulation and potential applications. Major conclusions The extensive uses of Lf in the treatment of various infectious diseases in animals and humans has been the driving force in Lf research however, a lot of work is required to obtain a better understanding of its activity. General significance The large potential applications of Lf have led scientists to develop this nutraceutical protein for use in feed, food and pharmaceutical applications. This article is part of a Special Issue entitled Molecular Mechanisms of Iron Transport and Disorders.
                Bookmark

                Author and article information

                Contributors
                Journal
                Redox Biol
                Redox Biol
                Redox Biology
                Elsevier
                2213-2317
                21 December 2018
                February 2019
                21 December 2018
                : 21
                : 101090
                Affiliations
                [a ]College of Life and Health Sciences, Northeastern University, No.195, Chuangxin Road, Hunnan District, Shenyang 110169, China
                [b ]Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, China
                [c ]Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 22184 Lund, Sweden
                Author notes
                [* ]Corresponding author at: College of Life and Health Sciences, Northeastern University, No.195, Chuangxin Road, Hunnan District, Shenyang 110169, China. wangzy@ 123456mail.neu.edu.cn
                [** ]Corresponding author. guoc@ 123456mail.neu.edu.cn
                Article
                S2213-2317(18)31208-4 101090
                10.1016/j.redox.2018.101090
                6307097
                30593976
                dc3cf05e-ed45-46a3-b4cb-f50ef2132770
                © 2018 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 December 2018
                : 17 December 2018
                : 19 December 2018
                Categories
                Research Paper

                parkinson's disease,iron chelators,lactoferrin,motor dysfunction

                Comments

                Comment on this article