41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Curcumin blocks autophagy and activates apoptosis of malignant mesothelioma cell lines and increases the survival of mice intraperitoneally transplanted with a malignant mesothelioma cell line

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Malignant mesothelioma (MM) is a primary tumor arising from the serous membranes. The resistance of MM patients to conventional therapies, and the poor patients’ survival, encouraged the identification of molecular targets for MM treatment. Curcumin (CUR) is a “multifunctional drug”. We explored the in vitro effects of CUR on cell proliferation, cell cycle regulation, pro-survival signaling pathways, apoptosis, autophagy of human (MM-B1, H-Meso-1, MM-F1), and mouse (#40a) MM cells. In addition, we evaluated the in vivo anti-tumor activities of CUR in C57BL/6 mice intraperitoneally transplanted with #40a cells forming ascites.

          CUR in vitro inhibited MM cells survival in a dose- and time-dependent manner and increased reactive oxygen species’intracellular production and induced DNA damage. CUR triggered autophagic flux, but the process was then blocked and was coincident with caspase 8 activation which activates apoptosis. CUR-mediated apoptosis was supported by the increase of Bax/Bcl-2 ratio, increase of p53 expression, activation of caspase 9, cleavage of PARP-1, increase of the percentage of cells in the sub G1 phase which was reduced (MM-F1 and #40a) or abolished (MM-B1 and H-Meso-1) after MM cells incubation with the apoptosis inhibitor Z-VAD-FMK. CUR treatment stimulated the phosphorylation of ERK1/2 and p38 MAPK, inhibited that of p54 JNK and AKT, increased c-Jun expression and phosphorylation and prevented NF-κB nuclear translocation. Intraperitoneal administration of CUR increased the median survival of C57BL/6 mice intraperitoneally transplanted with #40a cells and reduced the risk of developing tumors. Our findings may have important implications for the design of MM treatment using CUR.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis.

          Apoptosis is a morphologically and biochemically distinct form of cell death that occurs under a variety of physiological and pathological conditions. In the present study, the proteolytic cleavage of poly(ADP-ribose) polymerase (pADPRp) during the course of chemotherapy-induced apoptosis was examined. Treatment of HL-60 human leukemia cells with the topoisomerase II-directed anticancer agent etoposide resulted in morphological changes characteristic of apoptosis. Endonucleolytic degradation of DNA to generate nucleosomal fragments occurred simultaneously. Western blotting with epitope-specific monoclonal and polyclonal antibodies revealed that these characteristic apoptotic changes were accompanied by early, quantitative cleavage of the M(r) 116,000 pADPRp polypeptide to an M(r) approximately 25,000 fragment containing the amino-terminal DNA-binding domain of pADPRp and an M(r) approximately 85,000 fragment containing the automodification and catalytic domains. Activity blotting revealed that the M(r) approximately 85,000 fragment retained basal pADPRp activity but was not activated by exogenous nicked DNA. Similar cleavage of pADPRp was observed after exposure of HL-60 cells to a variety of chemotherapeutic agents including cis-diaminedichloroplatinum(II), colcemid, 1-beta-D-arabinofuranosylcytosine, and methotrexate; to gamma-irradiation; or to the protein synthesis inhibitors puromycin or cycloheximide. Similar changes were observed in MDA-MB-468 human breast cancer cells treated with trifluorothymidine or 5-fluoro-2'-deoxyuridine and in gamma-irradiated or glucocorticoid-treated rat thymocytes undergoing apoptosis. Treatment with several compounds (tosyl-L-lysine chloromethyl ketone, tosyl-L-phenylalanine chloromethyl ketone, N-ethylmaleimide, iodoacetamide) prevented both the proteolytic cleavage of pADPRp and the internucleosomal fragmentation of DNA. The results suggest that proteolytic cleavage of pADPRp, in addition to being an early marker of chemotherapy-induced apoptosis, might reflect more widespread proteolysis that is a critical biochemical event early during the process of physiological cell death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autophagy: shaping the tumor microenvironment and therapeutic response.

            Autophagy, the major lysosomal pathway for recycling intracellular components including whole organelles, is emerging as a key process modulating tumorigenesis, tumor-stroma interactions, and cancer therapy. Research over the past decade has highlighted a context-dependent and dynamic role for autophagy in cancer: it is tumor suppressive in the early stages of cancer development, but fuels the growth of established tumors. Likewise, the stimulation of autophagy in response to therapeutics can contextually favor or weaken chemoresistance and antitumor immunity. From a therapeutic perspective, understanding whether, when, and how autophagy can be harnessed to kill cancer cells remains challenging. In this review, we discuss new connections that reveal the role of autophagy in shaping tumor-stroma interaction during carcinogenesis and in the context of anticancer treatments. Copyright © 2013 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Role of the Selective Adaptor p62 and Ubiquitin-Like Proteins in Autophagy

              The ubiquitin-proteasome system and autophagy were long viewed as independent, parallel degradation systems with no point of intersection. By now we know that these degradation pathways share certain substrates and regulatory molecules and show coordinated and compensatory function. Two ubiquitin-like protein conjugation pathways were discovered that are required for autophagosome biogenesis: the Atg12-Atg5-Atg16 and Atg8 systems. Autophagy has been considered to be essentially a nonselective process, but it turned out to be at least partially selective. Selective substrates of autophagy include damaged mitochondria, intracellular pathogens, and even a subset of cytosolic proteins with the help of ubiquitin-binding autophagic adaptors, such as p62/SQSTM1, NBR1, NDP52, and Optineurin. These proteins selectively recognize autophagic cargo and mediate its engulfment into autophagosomes by binding to the small ubiquitin-like modifiers that belong to the Atg8/LC3 family.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                23 May 2017
                30 January 2017
                : 8
                : 21
                : 34405-34422
                Affiliations
                1 Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
                2 Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
                3 Center for Regenerative Medicine, (CIMER), University of Rome “Tor Vergata”, Rome, Italy
                Author notes
                Correspondence to: Roberto Bei, bei@ 123456med.uniroma2.it
                Article
                14907
                10.18632/oncotarget.14907
                5470978
                28159921
                dcbefc82-83e2-49ea-b7e4-d5ac59fdb924
                Copyright: © 2017 Masuelli et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 November 2016
                : 13 December 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                curcumin,malignant mesothelioma,apoptosis,autophagy,proliferation
                Oncology & Radiotherapy
                curcumin, malignant mesothelioma, apoptosis, autophagy, proliferation

                Comments

                Comment on this article