5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Triple cysteine module within M-type K+ channels mediates reciprocal channel modulation by nitric oxide and reactive oxygen species.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have identified a new signaling role for nitric oxide (NO) in neurons from the trigeminal ganglia (TG). We show that in rat sensory neurons from the TG the NO donor, S-nitroso-N-acetyl-dl-penicillamine, inhibited M-current. This inhibitory effect was blocked by NO scavenging, while inhibition of NO synthases increased M-current, suggesting that tonic NO levels inhibit M-current in TG neurons. Moreover NO increased neuronal excitability and calcitonin gene-related peptide (CGRP) release and these effects could be prevented by perturbing M-channel function. First, NO-induced depolarization was prevented by pre-application of the M-channel blocker XE991 and second, NO-induced increase in CGRP release was prevented by incubation with the M-channel opener retigabine. We investigated the mechanism of the effects of NO on M-channels and identified a site of action of NO to be the redox modulatory site at the triplet of cysteines within the cytosolic linker between transmembrane domains 2 and 3, which is also a site of oxidative modification of M-channels by reactive oxygen species (ROS). NO and oxidative modifications have opposing effects on M-current, suggesting that a tightly controlled local redox and NO environment will exert fine control over M-channel activity and thus neuronal excitability. Together our data have identified a dynamic redox sensor within neuronal M-channels, which mediates reciprocal regulation of channel activity by NO and ROS. This sensor may play an important role in mediating excitatory effects of NO in such trigeminal disorders as headache and migraine.

          Related collections

          Author and article information

          Journal
          J Neurosci
          The Journal of neuroscience : the official journal of the Society for Neuroscience
          Society for Neuroscience
          1529-2401
          0270-6474
          Apr 03 2013
          : 33
          : 14
          Affiliations
          [1 ] School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom. lezanne@uow.edu.au
          Article
          33/14/6041 EMS52781
          10.1523/JNEUROSCI.4275-12.2013
          3664272
          23554485
          dcc1b765-d919-4218-941a-b4acbdc11386
          History

          Comments

          Comment on this article