21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advanced glycation end-products (AGEs) resulting from non-enzymatic glycation are one of the major factors implicated in secondary complications of diabetes. Scientists are focusing on discovering new compounds that may be used as potential AGEs inhibitors without affecting the normal structure and function of biomolecules. A number of natural and synthetic compounds have been proposed as AGE inhibitors. In this study, we investigated the inhibitory effects of AgNPs (silver nanoparticles) in AGEs formation. AgNPs (~30.5 nm) synthesized from Aloe Vera leaf extract were characterized using UV-Vis spectroscopy, energy-dispersive X-ray spectroscopy (EDX), high resolution-transmission electron microscopy, X-ray diffraction and dynamic light scattering (DLS) techniques. The inhibitory effects of AgNPs on AGEs formation were evaluated by investigating the degree of reactivity of free amino groups (lysine and arginine residues), protein-bound carbonyl and carboxymethyl lysine (CML) content, and the effects on protein structure using various physicochemical techniques. The results showed that AgNPs significantly inhibit AGEs formation in a concentration dependent manner and that AgNPs have a positive effect on protein structure. These findings strongly suggest that AgNPs may play a therapeutic role in diabetes-related complications.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range.

          Fluorescamine is a new reagent for the detection of primary amines in the picomole range. Its reaction with amines is almost instantaneous at room temperature in aqueous media. The products are highly fluorescent, whereas the reagent and its degradation products are nonfluorescent. Applications are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking.

            Age-associated increases in collagen cross-linking and accumulation of advanced glycosylation products are both accelerated by diabetes, suggesting that glucose-derived cross-link formation may contribute to the development of chronic diabetic complications as well as certain physical changes of aging. Aminoguanidine, a nucleophilic hydrazine compound, prevented both the formation of fluorescent advanced nonenzymatic glycosylation products and the formation of glucose-derived collagen cross-links in vitro. Aminoguanidine administration to rats was equally effective in preventing diabetes-induced formation of fluorescent advanced nonenzymatic glycosylation products and cross-linking of arterial wall connective tissue protein in vivo. The identification of aminoguanidine as an inhibitor of advanced nonenzymatic glycosylation product formation now makes possible precise experimental definition of the pathogenetic significance of this process and suggests a potential clinical role for aminoguanidine in the future treatment of chronic diabetic complications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanoplatforms for targeted molecular imaging in living subjects.

              Molecular or personalized medicine is the future of patient management and molecular imaging plays a key role towards this goal. Recently, nanoplatform-based molecular imaging has emerged as an interdisciplinary field, which involves chemistry, engineering, biology, and medicine. Possessing unprecedented potential for early detection, accurate diagnosis, and personalized treatment of diseases, nanoplatforms have been employed in every single biomedical imaging modality, namely, optical imaging, computed tomography, ultrasound, magnetic resonance imaging, single-photon-emission computed tomography, and positron emission tomography. Multifunctionality is the key advantage of nanoplatforms over traditional approaches. Targeting ligands, imaging labels, therapeutic drugs, and many other agents can all be integrated into the nanoplatform to allow for targeted molecular imaging and molecular therapy by encompassing many biological and biophysical barriers. In this Review, we will summarize the current state-of-the-art of nanoplatforms for targeted molecular imaging in living subjects.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                02 February 2016
                2016
                : 6
                : 20414
                Affiliations
                [1 ]School of Biotechnology, Yeungnam University , Gyeongsan, Republic of Korea
                [2 ]Nanotechnology and Antimicrobial Drug Resistance Research Laboratory, Department of Microbiology, Jawaharlal Nehru Medical College & Hospital, Aligarh Muslim University , Aligarh-202002, U.P., India
                [3 ]Department of Medical Laboratories, College of Applied Medical Science, Buraydah Colleges , Buraydah 51452, Saudi Arabia
                [4 ]Department of Medical Laboratories, College of Medical Science, Qassim University , Saudi Arabia
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep20414
                10.1038/srep20414
                4735866
                26829907
                dd10c4c9-8550-41f2-b95e-a3309d017b38
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 23 June 2015
                : 04 January 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article