33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Use of Zebrafish ( Danio rerio) Behavioral Responses in Identifying Sublethal Exposures to Deltamethrin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alterations of fish behavioral responses are sensitive indicators to identify accidental chemical pollution. In this research, a series of exposure tests were conducted to investigate behavioral changes of adult zebrafish ( Danio rerio) exposed to deltamethrin (DM) in six concentrations of 0, 0.15, 1.5, 3.75, 7.5 and 15 μg/L. Swimming changes in zebrafish were detected at a concentration as low as 1% of the LC 50-24h within five hours. Hyperactivity was the first response, followed by a second response of fish surfacing. The change patterns of swimming speed in zebrafish were similar in all exposure groups, but the degree increased with increasing concentrations. Swimming speed and depth were altered within the first two hours after exposure, which was regarded as the most vital phase for water quality monitoring. The duration of hyperactivity and the time of zebrafish surfacing were both logarithmically correlated with exposure concentrations, which was helpful to distinguish the level of pollution.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity

          Environmental pollutants such as metals, pesticides, and other organics pose serious risks to many aquatic organisms. Accordingly, a great deal of previous research has characterized physiological mechanisms of toxicity in animals exposed to contaminants. In contrast, effects of contaminants on fish behaviour are less frequently studied. Because behaviour links physiological function with ecological processes, behavioural indicators of toxicity appear ideal for assessing the effects of aquatic pollutants on fish populations. Here we consider the many toxicants that disrupt complex fish behaviours, such as predator avoidance, reproductive, and social behaviours. Toxicant exposure often completely eliminates the performance of behaviours that are essential to fitness and survival in natural ecosystems, frequently after exposures of lesser magnitude than those causing significant mortality. Unfortunately, the behavioural toxicity of many xenobiotics is still unknown, warranting their future study. Physiological effects of toxicants in the literature include disruption of sensory, hormonal, neurological, and metabolic systems, which are likely to have profound implications for many fish behaviours. However, little toxicological research has sought to integrate the behavioural effects of toxicants with physiological processes. Those studies that take this multidisciplinary approach add important insight into possible mechanisms of behavioural alteration. The most commonly observed links with behavioural disruption include cholinesterase (ChE) inhibition, altered brain neurotransmitter levels, sensory deprivation, and impaired gonadal or thyroid hormone levels. Even less frequently studied are the implications of interrelated changes in behaviour and physiology caused by aquatic pollutants for fish populations. We conclude that future integrative, multidisciplinary research is clearly needed to increase the significance and usefulness of behavioural indicators for aquatic toxicology, and aim to highlight specific areas for consideration. Copyright 2004 Elsevier B.V.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch.

            The pyrethroid class of insecticides, including deltamethrin, are being used as substitutes for organochlorines and organophosphates in pest-control programs because of their low environmental persistence and toxicity. Ecotoxicological consequences of deltamethrin, particularly its effects on antioxidants in fish and other aquatic organisms, are not well understood. We investigated the effect of deltamethrin (0.75 microg/L) on antioxidants in a freshwater fish, Channa punctatus Bloch, using standard laboratory conditions. A single exposure for 48 h caused induction of various antioxidant enzymes and nonenzymatic antioxidants in kidney and liver. The induction of these antioxidants was not very prominent in gills. In fact, certain antioxidants were found to be depleted in gills. Catalase activity was decreased in all the tissues. Deltamethrin also induced lipid peroxidation in all the tissues, gills showing the highest levels. Glutathione, which is an established nonenzymatic antioxidant in fish, was significantly (P<0.001) increased in all the tissues. Ascorbic acid content increased in kidney and liver while it decreased in gills. The findings of the present investigation show that deltamethrin has oxidative-stress-inducing potential in fish, and gills are the most sensitive organs. It is also interesting to note that gills are the primary sites of deltamethrin absorption and their antioxidant potential is also very poor. The various parameters studied in this investigation can also be used as biomarkers of exposure to deltamethrin. It is suggested that appropriate ecotoxicological risk assessment should be made in the areas where deltamethrin is proposed to be used in pest control activities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Risk assessment of the use of deltamethrin on bednets for the prevention of malaria.

              Risk assessments covering the use of the pyrethroid, deltamethrin, on bednets for the prevention of malaria have been conducted The toxicity of deltamethrin in humans and animals is reviewed following both dermal and oral exposure. The no-adverse-effect level (NOEL) for exposure via the dermal route was 1000 mg/kg body weight/day. From this an acceptable exposure level (AEL) of 10 mg/kg body weight/day has been derived. The NOEL for exposure via the oral route was 1 mg/kg body weight/day, with exposures above this causing neurotoxic effects in animals. This NOEL has been used to derive margins of safety compared with predicted exposures. While direct skin contact does not seem to cause systemic toxicity in humans, it can cause burning, numbness and tingling of the skin, which is a local effect. This too is taken into account in the risk assessments. The risk assessments cover those treating bednets, on an intermittent or regular basis, the washing of treated nets, sleeping under treated nets (infants, children and adults). Worst case scenarios for each of these situations show that dermal exposures are low (one-tenth or less of the AEL) and the margins of safety for systemic exposure derived from oral data are acceptable, ranging from 10 to 3300. The benefits of the use of treated bednets in reducing morbidity and mortality from malaria are considerable and it can be concluded that the risk:benefit ratio is very favourable.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                02 April 2014
                April 2014
                : 11
                : 4
                : 3650-3660
                Affiliations
                [1 ]School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710043, China; E-Mails: huangyiwater@ 123456163.com (Y.H.); huangtinglin@ 123456xauat.edu.cn (T.H.)
                [2 ]Shenzhen Water (Group) Co., Ltd., Shenzhen 518031, China; E-Mail: xiaobohan7@ 123456gmail.com
                [3 ]Research Center for Eco-Environmental Sciences, Beijing 10085, China
                Author notes
                [* ] Author to whom correspondence should be addressed; E-Mail: zhangjinsong@ 123456waterchina.com ; Tel./Fax: +86-755-8213-7919.
                Article
                ijerph-11-03650
                10.3390/ijerph110403650
                4024987
                24699028
                dd8cf17e-5208-406c-84e1-6a300ec05776
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 08 January 2014
                : 12 March 2014
                : 18 March 2014
                Categories
                Article

                Public health
                behavioral response,bio-monitoring,zebrafish,hyperactivity,surfacing
                Public health
                behavioral response, bio-monitoring, zebrafish, hyperactivity, surfacing

                Comments

                Comment on this article