34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanoparticle-Delivered Transforming Growth Factor-β siRNA Enhances Vaccination against Advanced Melanoma by Modifying Tumor Microenvironment

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Achievement of potent immunoresponses against self/tumor antigens and effective therapeutic outcome against advanced tumors remain major challenges in cancer immunotherapy. The specificity and efficiency of two nanoparticle-based delivery systems, lipid-calcium-phosphate (LCP) nanoparticle (NP) and liposome-protamine-hyaluronic acid (LPH) NP, provide us an opportunity to address both challenges. A mannose-modified LCP NP delivered both tumor antigen (Trp 2 peptide) and adjuvant (CpG oligonucleotide) to the dendritic cells and elicited a potent, systemic immune response regardless of the existence or the stage of tumors in the host. This vaccine was less effective, however, against later stage B16F10 melanoma in a subcutaneous syngeneic model. Mechanistic follow-up studies suggest that elevated levels of immune-suppressive cytokines within the tumor microenvironment, such as TGF-β, might be responsible. We strategically augment the efficacy of LCP vaccine on an advanced tumor by silencing TGF-β in tumor cells. The delivery of siRNA using LPH NP resulted in about 50% knockdown of TGF-β in the late stage tumor microenvironment. TGF-β down-regulation boosted the vaccine efficacy and inhibited tumor growth by 52% compared with vaccine treatment alone, as a result of increased levels of tumor infiltrating CD8+ T cells and decreased level of regulatory T cells. Combination of systemic induction of antigen-specific immune response with LCP vaccine and targeted modification of tumor microenvironment with LPH NP offers a flexible and powerful platform for both mechanism study and immunotherapeutic strategy development.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Transforming growth factor-beta regulation of immune responses.

          Transforming growth factor-beta (TGF-beta) is a potent regulatory cytokine with diverse effects on hemopoietic cells. The pivotal function of TGF-beta in the immune system is to maintain tolerance via the regulation of lymphocyte proliferation, differentiation, and survival. In addition, TGF-beta controls the initiation and resolution of inflammatory responses through the regulation of chemotaxis, activation, and survival of lymphocytes, natural killer cells, dendritic cells, macrophages, mast cells, and granulocytes. The regulatory activity of TGF-beta is modulated by the cell differentiation state and by the presence of inflammatory cytokines and costimulatory molecules. Collectively, TGF-beta inhibits the development of immunopathology to self or nonharmful antigens without compromising immune responses to pathogens. This review highlights the findings that have advanced our understanding of TGF-beta in the immune system and in disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoparticles in medicine: therapeutic applications and developments.

            Nanotechnology is the understanding and control of matter generally in the 1-100 nm dimension range. The application of nanotechnology to medicine, known as nanomedicine, concerns the use of precisely engineered materials at this length scale to develop novel therapeutic and diagnostic modalities. Nanomaterials have unique physicochemical properties, such as ultra small size, large surface area to mass ratio, and high reactivity, which are different from bulk materials of the same composition. These properties can be used to overcome some of the limitations found in traditional therapeutic and diagnostic agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immune therapy for cancer.

              Over the past decade, immune therapy has become a standard treatment for a variety of cancers. Monoclonal antibodies, immune adjuvants, and vaccines against oncogenic viruses are now well-established cancer therapies. Immune modulation is a principal element of supportive care for many high-dose chemotherapy regimens. In addition, immune activation is now appreciated as central to the therapeutic mechanism of bone marrow transplantation for hematologic malignancies. Advances in our understanding of the molecular interactions between tumors and the immune system have led to many novel investigational therapies and continue to inform efforts for devising more potent therapeutics. Novel approaches to immune-based cancer treatment strive to augment antitumor immune responses by expanding tumor-reactive T cells, providing exogenous immune-activating stimuli, and antagonizing regulatory pathways that induce immune tolerance. The future of immune therapy for cancer is likely to combine many of these approaches to generate more effective treatments.
                Bookmark

                Author and article information

                Journal
                ACS Nano
                ACS Nano
                nn
                ancac3
                ACS Nano
                American Chemical Society
                1936-0851
                1936-086X
                01 March 2015
                01 March 2014
                22 April 2014
                : 8
                : 4
                : 3636-3645
                Affiliations
                [1]Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
                Author notes
                [* ]Address correspondence to leafh@ 123456unc.edu .
                Article
                10.1021/nn500216y
                4004320
                24580381
                de061e5a-2969-41ca-870b-8cd5aabe296d
                Copyright © 2014 American Chemical Society
                History
                : 13 January 2014
                : 01 March 2014
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                nn500216y
                nn-2014-00216y

                Nanotechnology
                nanoparticle,peptide vaccine,melanoma,tumor microenvironment,immunotherapy
                Nanotechnology
                nanoparticle, peptide vaccine, melanoma, tumor microenvironment, immunotherapy

                Comments

                Comment on this article