0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      De novo mutation in KITLG gene causes a variant of Familial Progressive Hyper‐ and Hypo‐pigmentation (FPHH)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Familial Progressive Hyper‐ and Hypopigmentation is a pigmentary disorder characterized by a mix of hypo‐ and hyperpigmented lesions, café‐au‐lait spots and hypopigmented ash‐leaf macules. The disorder was previously linked to KITLG and various mutations have been reported to segregate in different families. Furthermore, association between KITLG mutations and malignancies was also suggested. Exome and SANGER sequencing were performed for identification of KITLG mutations. Functional in silico analyses were additionally performed to assess the findings. We identified a de novo mutation in exon 4 of KITLG gene causing NM_000899.4:c.[329A>T] (chr12:88912508A>T) leading to NP_000890.1:p.(Asp110Val) substitution in the 3rd alpha helix. It was predicted as pathogenic, located in a conserved region and causing an increase in hydrophobicity in the KITLG protein. Our findings clearly confirm an additional hot spot of KITLG mutations in the 3rd alpha helix, which very likely increases the risk of malignancies. To our knowledge the present study provides the strongest evidence of association of the KITLG mutation with both Familial Progressive Hyper‐ and Hypopigmentation and malignancy due to its’ location on somatic cancer mutation locus. Additionally we also address difficulties with classification of the unique phenotype and propose a subtype within broader diagnosis.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.

            Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our understanding of genetic variation among individuals. However, the massive data sets generated by NGS--the 1000 Genome pilot alone includes nearly five terabases--make writing feature-rich, efficient, and robust analysis tools difficult for even computationally sophisticated individuals. Indeed, many professionals are limited in the scope and the ease with which they can answer scientific questions by the complexity of accessing and manipulating the data produced by these machines. Here, we discuss our Genome Analysis Toolkit (GATK), a structured programming framework designed to ease the development of efficient and robust analysis tools for next-generation DNA sequencers using the functional programming philosophy of MapReduce. The GATK provides a small but rich set of data access patterns that encompass the majority of analysis tool needs. Separating specific analysis calculations from common data management infrastructure enables us to optimize the GATK framework for correctness, stability, and CPU and memory efficiency and to enable distributed and shared memory parallelization. We highlight the capabilities of the GATK by describing the implementation and application of robust, scale-tolerant tools like coverage calculators and single nucleotide polymorphism (SNP) calling. We conclude that the GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data

              High-throughput sequencing platforms are generating massive amounts of genetic variation data for diverse genomes, but it remains a challenge to pinpoint a small subset of functionally important variants. To fill these unmet needs, we developed the ANNOVAR tool to annotate single nucleotide variants (SNVs) and insertions/deletions, such as examining their functional consequence on genes, inferring cytogenetic bands, reporting functional importance scores, finding variants in conserved regions, or identifying variants reported in the 1000 Genomes Project and dbSNP. ANNOVAR can utilize annotation databases from the UCSC Genome Browser or any annotation data set conforming to Generic Feature Format version 3 (GFF3). We also illustrate a ‘variants reduction’ protocol on 4.7 million SNVs and indels from a human genome, including two causal mutations for Miller syndrome, a rare recessive disease. Through a stepwise procedure, we excluded variants that are unlikely to be causal, and identified 20 candidate genes including the causal gene. Using a desktop computer, ANNOVAR requires ∼4 min to perform gene-based annotation and ∼15 min to perform variants reduction on 4.7 million variants, making it practical to handle hundreds of human genomes in a day. ANNOVAR is freely available at http://www.openbioinformatics.org/annovar/ .
                Bookmark

                Author and article information

                Contributors
                uros.potocnik@um.si
                Journal
                Mol Genet Genomic Med
                Mol Genet Genomic Med
                10.1002/(ISSN)2324-9269
                MGG3
                Molecular Genetics & Genomic Medicine
                John Wiley and Sons Inc. (Hoboken )
                2324-9269
                30 October 2021
                December 2021
                : 9
                : 12 ( doiID: 10.1002/mgg3.v9.12 )
                : e1841
                Affiliations
                [ 1 ] Faculty of Medicine Centre for Human Molecular Genetics and Pharmacogenomics University of Maribor Maribor Slovenia
                [ 2 ] Faculty of Health Sciences Department of Nursing Maribor Slovenia
                [ 3 ] Department of Dermatology and Venereal Diseases University Clinical Centre Maribor Maribor Slovenia
                [ 4 ] Faculty of Medicine Institute of Pathology University of Ljubljana Ljubljana Slovenia
                [ 5 ] Faculty of Chemistry and Chemical Engineering Laboratory of Biochemistry, Molecular Biology and Genomics University of Maribor Maribor Slovenia
                Author notes
                [*] [* ] Correspondence

                Uroš Potočnik, Centre of Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia.

                Email: uros.potocnik@ 123456um.si

                Author information
                https://orcid.org/0000-0003-4208-9683
                Article
                MGG31841
                10.1002/mgg3.1841
                8683634
                34716665
                e007f43c-9152-4d6a-929a-d219c6d30b5f
                © 2021 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 09 September 2021
                : 20 January 2021
                : 17 October 2021
                Page count
                Figures: 6, Tables: 0, Pages: 9, Words: 5149
                Funding
                Funded by: Javna Agencija za Raziskovalno Dejavnost RS , doi 10.13039/501100004329;
                Award ID: P3‐0067
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                December 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.7.0 mode:remove_FC converted:18.12.2021

                exome sequencing,familial progressive hyper‐ and hypo‐pigmentation,gain‐of‐function,kitlg

                Comments

                Comment on this article