51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      PROTAC targeted protein degraders: the past is prologue

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Targeted protein degradation (TPD) is an emerging therapeutic modality with the potential to tackle disease-causing proteins that have historically been highly challenging to target with conventional small molecules. In the 20 years since the concept of a proteolysis-targeting chimera (PROTAC) molecule harnessing the ubiquitin–proteasome system to degrade a target protein was reported, TPD has moved from academia to industry, where numerous companies have disclosed programmes in preclinical and early clinical development. With clinical proof-of-concept for PROTAC molecules against two well-established cancer targets provided in 2020, the field is poised to pursue targets that were previously considered ‘undruggable’. In this Review, we summarize the first two decades of PROTAC discovery and assess the current landscape, with a focus on industry activity. We then discuss key areas for the future of TPD, including establishing the target classes for which TPD is most suitable, expanding the use of ubiquitin ligases to enable precision medicine and extending the modality beyond oncology.

          Abstract

          Targeted protein degradation with proteolysis-targeting chimeras (PROTACs) has the potential to tackle disease-causing proteins that have historically been highly challenging to target with conventional small molecules. This article summarizes the first two decades of PROTAC discovery and discusses key areas for the future of this therapeutic modality, including establishing the target classes for which it is most suitable and extending its application beyond oncology.

          Related collections

          Most cited references255

          • Record: found
          • Abstract: found
          • Article: not found

          A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing

          SUMMARY The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption 1,2 . There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Accurate prediction of protein structures and interactions using a 3-track neural network

            DeepMind presented remarkably accurate predictions at the recent CASP14 protein structure prediction assessment conference. We explored network architectures incorporating related ideas and obtained the best performance with a 3-track network in which information at the 1D sequence level, the 2D distance map level, and the 3D coordinate level is successively transformed and integrated. The 3-track network produces structure predictions with accuracies approaching those of DeepMind in CASP14, enables the rapid solution of challenging X-ray crystallography and cryo-EM structure modeling problems, and provides insights into the functions of proteins of currently unknown structure. The network also enables rapid generation of accurate protein-protein complex models from sequence information alone, short circuiting traditional approaches which require modeling of individual subunits followed by docking. We make the method available to the scientific community to speed biological research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Highly accurate protein structure prediction for the human proteome

              Protein structures can provide invaluable information, both for reasoning about biological processes and for enabling interventions such as structure-based drug development or targeted mutagenesis. After decades of effort, 17% of the total residues in human protein sequences are covered by an experimentally determined structure 1 . Here we markedly expand the structural coverage of the proteome by applying the state-of-the-art machine learning method, AlphaFold 2 , at a scale that covers almost the entire human proteome (98.5% of human proteins). The resulting dataset covers 58% of residues with a confident prediction, of which a subset (36% of all residues) have very high confidence. We introduce several metrics developed by building on the AlphaFold model and use them to interpret the dataset, identifying strong multi-domain predictions as well as regions that are likely to be disordered. Finally, we provide some case studies to illustrate how high-quality predictions could be used to generate biological hypotheses. We are making our predictions freely available to the community and anticipate that routine large-scale and high-accuracy structure prediction will become an important tool that will allow new questions to be addressed from a structural perspective. AlphaFold is used to predict the structures of almost all of the proteins in the human proteome—the availability of high-confidence predicted structures could enable new avenues of investigation from a structural perspective.
                Bookmark

                Author and article information

                Contributors
                miklos.bekes@arvinas.com
                david.langley@arvinas.com
                craig.crews@yale.edu
                Journal
                Nat Rev Drug Discov
                Nat Rev Drug Discov
                Nature Reviews. Drug Discovery
                Nature Publishing Group UK (London )
                1474-1776
                1474-1784
                18 January 2022
                : 1-20
                Affiliations
                [1 ]GRID grid.504169.f, ISNI 0000 0004 7667 0983, Arvinas, Inc., ; New Haven, CT USA
                [2 ]GRID grid.47100.32, ISNI 0000000419368710, Department of Molecular, Cellular & Developmental Biology, , Yale University, ; New Haven, CT USA
                [3 ]GRID grid.47100.32, ISNI 0000000419368710, Department of Pharmacology, , Yale University, ; New Haven, CT USA
                [4 ]GRID grid.47100.32, ISNI 0000000419368710, Department of Chemistry, , Yale University, ; New Haven, CT USA
                Author information
                http://orcid.org/0000-0001-8423-9235
                http://orcid.org/0000-0002-0820-3190
                http://orcid.org/0000-0002-8456-2005
                Article
                371
                10.1038/s41573-021-00371-6
                8765495
                35042991
                e0613cf6-2002-4f9b-95a3-35c84fdffc76
                © Springer Nature Limited 2022

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 1 December 2021
                Categories
                Review Article

                drug discovery,chemical biology,biotechnology
                drug discovery, chemical biology, biotechnology

                Comments

                Comment on this article