53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Hypomethylating Variant of MTHFR, 677C>T, Blunts the Neural Response to Errors in Patients with Schizophrenia and Healthy Individuals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Responding to errors is a critical first step in learning from mistakes, a process that is abnormal in schizophrenia. To gain insight into the neural and molecular mechanisms of error processing, we used functional MRI to examine effects of a genetic variant in methylenetetrahydrofolate reductase ( MTHFR 677C>T, rs1801133) that increases risk for schizophrenia and that has been specifically associated with increased perseverative errors among patients. MTHFR is a key regulator of the intracellular one-carbon milieu, including DNA methylation, and each copy of the 677T allele reduces MTHFR activity by 35%.

          Methodology/Principal Findings

          Using an antisaccade paradigm, we found that the 677T allele induces a dose-dependent blunting of dorsal anterior cingulate cortex (dACC) activation in response to errors, a pattern that was identical in healthy individuals and patients with schizophrenia. Further, the normal relationship between dACC activation and error rate was disrupted among carriers of the 677T allele.

          Conclusions/Significance

          These findings implicate an epigenetic mechanism in the neural response to errors, and provide insight into normal cognitive variation through a schizophrenia risk gene.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity.

          The authors present a unified account of 2 neural systems concerned with the development and expression of adaptive behaviors: a mesencephalic dopamine system for reinforcement learning and a "generic" error-processing system associated with the anterior cingulate cortex. The existence of the error-processing system has been inferred from the error-related negativity (ERN), a component of the event-related brain potential elicited when human participants commit errors in reaction-time tasks. The authors propose that the ERN is generated when a negative reinforcement learning signal is conveyed to the anterior cingulate cortex via the mesencephalic dopamine system and that this signal is used by the anterior cingulate cortex to modify performance on the task at hand. They provide support for this proposal using both computational modeling and psychophysiological experimentation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status.

            DNA methylation, an essential epigenetic feature of DNA that modulates gene expression and genomic integrity, is catalyzed by methyltransferases that use the universal methyl donor S-adenosyl-l-methionine. Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-methyltetrahydrofolate (5-methylTHF), the methyl donor for synthesis of methionine from homocysteine and precursor of S-adenosyl-l-methionine. In the present study we sought to determine the effect of folate status on genomic DNA methylation with an emphasis on the interaction with the common C677T mutation in the MTHFR gene. A liquid chromatography/MS method for the analysis of nucleotide bases was used to assess genomic DNA methylation in peripheral blood mononuclear cell DNA from 105 subjects homozygous for this mutation (T/T) and 187 homozygous for the wild-type (C/C) MTHFR genotype. The results show that genomic DNA methylation directly correlates with folate status and inversely with plasma homocysteine (tHcy) levels (P < 0.01). T/T genotypes had a diminished level of DNA methylation compared with those with the C/C wild-type (32.23 vs.62.24 ng 5-methylcytosine/microg DNA, P < 0.0001). When analyzed according to folate status, however, only the T/T subjects with low levels of folate accounted for the diminished DNA methylation (P < 0.0001). Moreover, in T/T subjects DNA methylation status correlated with the methylated proportion of red blood cell folate and was inversely related to the formylated proportion of red blood cell folates (P < 0.03) that is known to be solely represented in those individuals. These results indicate that the MTHFR C677T polymorphism influences DNA methylation status through an interaction with folate status.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition.

              Hyperhomocysteinemia, a risk factor for cardiovascular disease, is caused by nutritional and/or genetic disruptions in homocysteine metabolism. The most common genetic cause of hyperhomocysteinemia is the 677C-->T mutation in the methylenetetrahydrofolate reductase (MTHFR) gene. This variant, with mild enzymatic deficiency, is associated with an increased risk for neural tube defects and pregnancy complications and with a decreased risk for colon cancer and leukemia. Although many studies have reported that this variant is also a risk factor for vascular disease, this area of investigation is still controversial. Severe MTHFR deficiency results in homocystinuria, an inborn error of metabolism with neurological and vascular complications. To investigate the in vivo pathogenetic mechanisms of MTHFR deficiency, we generated mice with a knockout of MTHFR: Plasma total homocysteine levels in heterozygous and homozygous knockout mice are 1.6- and 10-fold higher than those in wild-type littermates, respectively. Both heterozygous and homozygous knockouts have either significantly decreased S-adenosylmethionine levels or significantly increased S-adenosylhomocysteine levels, or both, with global DNA hypomethylation. The heterozygous knockout mice appear normal, whereas the homozygotes are smaller and show developmental retardation with cerebellar pathology. Abnormal lipid deposition in the proximal portion of the aorta was observed in older heterozygotes and homozygotes, alluding to an atherogenic effect of hyperhomocysteinemia in these mice.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                28 September 2011
                : 6
                : 9
                : e25253
                Affiliations
                [1]Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
                University of Chicago, United States of America
                Author notes

                Conceived and designed the experiments: JLR DSM DCG. Performed the experiments: JWS DGB AZN YA MI JSF KAD. Analyzed the data: AZN DGB JLR. Contributed reagents/materials/analysis tools: DCG. Wrote the paper: JLR DSM.

                Article
                PONE-D-11-10890
                10.1371/journal.pone.0025253
                3182200
                21980405
                e0d1f14b-5496-43f0-8ebe-bb6809b79a90
                Roffman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 2 June 2011
                : 30 August 2011
                Page count
                Pages: 8
                Categories
                Research Article
                Biology
                Computational Biology
                Population Genetics
                Genetic Polymorphism
                Evolutionary Biology
                Population Genetics
                Genetic Polymorphism
                Genetics
                Population Genetics
                Genetic Polymorphism
                Epigenetics
                Neuroscience
                Cognitive Neuroscience
                Cognition
                Neuroimaging
                Fmri
                Population Biology
                Population Genetics
                Genetic Polymorphism
                Medicine
                Clinical Genetics
                Mental Health
                Psychiatry
                Schizophrenia

                Uncategorized
                Uncategorized

                Comments

                Comment on this article