1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimization and Simulation of Virtual Experiment System of Human Sports Science Based on VR

      1
      Complexity
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Virtual reality technology is an emerging technology developed on the basis of information technology. It is widely used in military, medical, mining, entertainment, and other fields. Therefore, many countries have been vigorously conducting research in recent years. As one of the important components of the virtual reality system, the three-dimensional human motion tracking system is of great significance to the research of practical virtual reality systems. It introduces the measurement principle of the spatial three-dimensional coordinate dynamic measurement device and discusses in detail the ultrasonic transmission, reception, amplification, filtering, comparison, shaping circuit, and single-chip interface circuit. This paper introduces the working principle and characteristics of the virtual experiment system and gives the structure diagram, hardware schematic diagram, and software flow diagram of the system. We mainly study the method of tracking human motion by measuring the three-dimensional coordinates of the space point, which lays a good foundation for the research of the actual three-dimensional motion tracking system. At the same time, the three-dimensional human body modeling is discussed, and the interactive movement policy of the human arm is briefly introduced. It has a certain effect on the actual virtual reality human-computer interaction system.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Reduction of physiological stress by urban green space in a multisensory virtual experiment

          Although stress is an increasing global health problem in cities, urban green spaces can provide health benefits. There is, however, a lack of understanding of the link between physiological mechanisms and qualities of urban green spaces. Here, we compare the effects of visual stimuli (360 degree virtual photos of an urban environment, forest, and park) to the effects of congruent olfactory stimuli (nature and city odours) and auditory stimuli (bird songs and noise) on physiological stress recovery. Participants (N = 154) were pseudo-randomised into participating in one of the three environments and subsequently exposed to stress (operationalised by skin conductance levels). The park and forest, but not the urban area, provided significant stress reduction. High pleasantness ratings of the environment were linked to low physiological stress responses for olfactory and to some extent for auditory, but not for visual stimuli. This result indicates that olfactory stimuli may be better at facilitating stress reduction than visual stimuli. Currently, urban planners prioritise visual stimuli when planning open green spaces, but urban planners should also consider multisensory qualities.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Visual Perception Enabled Industry Intelligence: State of the Art, Challenges and Prospects

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Studying human behavior with virtual reality: The Unity Experiment Framework

              Virtual reality (VR) systems offer a powerful tool for human behavior research. The ability to create three-dimensional visual scenes and to measure responses to the visual stimuli enables the behavioral researcher to test hypotheses in a manner and scale that were previously unfeasible. For example, a researcher wanting to understand interceptive timing behavior might wish to violate Newtonian mechanics so that objects can move in novel 3-D trajectories. The same researcher might wish to collect such data with hundreds of participants outside the laboratory, and the use of a VR headset makes this a realistic proposition. The difficulty facing the researcher is that sophisticated 3-D graphics engines (e.g., Unity) have been created for game designers rather than behavioral scientists. To overcome this barrier, we have created a set of tools and programming syntaxes that allow logical encoding of the common experimental features required by the behavioral scientist. The Unity Experiment Framework (UXF) allows researchers to readily implement several forms of data collection and provides them with the ability to easily modify independent variables. UXF does not offer any stimulus presentation features, so the full power of the Unity game engine can be exploited. We use a case study experiment, measuring postural sway in response to an oscillating virtual room, to show that UXF can replicate and advance upon behavioral research paradigms. We show that UXF can simplify and speed up the development of VR experiments created in commercial gaming software and facilitate the efficient acquisition of large quantities of behavioral research data.
                Bookmark

                Author and article information

                Contributors
                Journal
                Complexity
                Complexity
                Hindawi Limited
                1099-0526
                1076-2787
                May 31 2021
                May 31 2021
                : 2021
                : 1-10
                Affiliations
                [1 ]Department of Sports and Public Art, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
                Article
                10.1155/2021/3872881
                e182642f-facb-430c-9a69-2b60a5b91ecf
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article