4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      New Agents, Emerging Late Effects, and the Development of Precision Survivorship

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Incremental improvements in the treatment of children and adolescents with cancer have led to 5-year survival rates reaching nearly 85%. In the past decade, impressive progress has been made in understanding the biology of many pediatric cancers. With that understanding, multiple new agents have become available that offer the promise of more-effective and less-toxic treatment. These include agents that target various cell surface antigens and engage the adaptive immune system, as well as those that interfere with key signaling pathways involved in tumor development and growth. For local control, surgery and radiation techniques also have evolved, becoming less invasive or featuring new techniques and particles that more precisely target the tumor and limit the dose to normal tissue. Nevertheless, targeted agents, like conventional chemotherapy, radiotherapy, and surgery, may have off-target effects and deserve long-term follow-up of their safety and efficacy. These include injury to the endocrine, cardiovascular, and immunologic systems. New radiation and surgical techniques that theoretically reduce morbidity and improve long-term quality of life must also be validated with actual patient outcomes. Finally, with advances in genomics, information on host susceptibility to late effects is beginning to emerge. Such knowledge, coupled with improved metrics that better describe the spectrum of potential late effects across the entire lifespan, can lead to the development of decision models that project the potential long-term health outcomes associated with various treatment and follow-up strategies. These developments will help extend the current focus on precision medicine to precision survivorship, where clinicians, patients, and families will have a better grasp of the potential risks, benefits, and tradeoffs associated with the growing number of cancer treatment options.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Intent to treat leukemia remission by CD19CAR T cells of defined formulation and dose in children and young adults

          Publisher's Note: There is an [Related article:] Inside Blood Commentary on this article in this issue. Defined-composition manufacturing platform of CD19 CAR T cells contributes to >90% intent-to-treat complete remission rate. Uniformity of durable persistence of CAR T cells and mitigation of antigen escape are key aspects for further optimization. Transitioning CD19-directed chimeric antigen receptor (CAR) T cells from early-phase trials in relapsed patients to a viable therapeutic approach with predictable efficacy and low toxicity for broad application among patients with high unmet need is currently complicated by product heterogeneity resulting from transduction of undefined T-cell mixtures, variability of transgene expression, and terminal differentiation of cells at the end of culture. A phase 1 trial of 45 children and young adults with relapsed or refractory B-lineage acute lymphoblastic leukemia was conducted using a CD19 CAR product of defined CD4/CD8 composition, uniform CAR expression, and limited effector differentiation. Products meeting all defined specifications occurred in 93% of enrolled patients. The maximum tolerated dose was 10 6 CAR T cells per kg, and there were no deaths or instances of cerebral edema attributable to product toxicity. The overall intent-to-treat minimal residual disease–negative (MRD − ) remission rate for this phase 1 study was 89%. The MRD − remission rate was 93% in patients who received a CAR T-cell product and 100% in the subset of patients who received fludarabine and cyclophosphamide lymphodepletion. Twenty-three percent of patients developed reversible severe cytokine release syndrome and/or reversible severe neurotoxicity. These data demonstrate that manufacturing a defined-composition CD19 CAR T cell identifies an optimal cell dose with highly potent antitumor activity and a tolerable adverse effect profile in a cohort of patients with an otherwise poor prognosis. This trial was registered at www.clinicaltrials.gov as #NCT02028455.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cardiovascular Toxic Effects of Targeted Cancer Therapies.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phase I/Phase II Study of Blinatumomab in Pediatric Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia.

              Purpose Blinatumomab is a bispecific T-cell engager antibody construct targeting CD19 on B-cell lymphoblasts. We evaluated the safety, pharmacokinetics, recommended dosage, and potential for efficacy of blinatumomab in children with relapsed/refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Methods This open-label study enrolled children < 18 years old with relapsed/refractory BCP-ALL in a phase I dosage-escalation part and a phase II part, using 6-week treatment cycles. Primary end points were maximum-tolerated dosage (phase I) and complete remission rate within the first two cycles (phase II). Results We treated 49 patients in phase I and 44 patients in phase II. Four patients had dose-limiting toxicities in cycle 1 (phase I). Three experienced grade 4 cytokine-release syndrome (one attributed to grade 5 cardiac failure); one had fatal respiratory failure. The maximum-tolerated dosage was 15 µg/m(2)/d. Blinatumomab pharmacokinetics was linear across dosage levels and consistent among age groups. On the basis of the phase I data, the recommended blinatumomab dosage for children with relapsed/refractory ALL was 5 µg/m(2)/d for the first 7 days, followed by 15 µg/m(2)/d thereafter. Among the 70 patients who received the recommended dosage, 27 (39%; 95% CI, 27% to 51%) achieved complete remission within the first two cycles, 14 (52%) of whom achieved complete minimal residual disease response. The most frequent grade ≥ 3 adverse events were anemia (36%), thrombocytopenia (21%), and hypokalemia (17%). Three patients (4%) and one patient (1%) had cytokine-release syndrome of grade 3 and 4, respectively. Two patients (3%) interrupted treatment after grade 2 seizures. Conclusion This trial, which to the best of our knowledge was the first such trial in pediatrics, demonstrated antileukemic activity of single-agent blinatumomab with complete minimal residual disease response in children with relapsed/refractory BCP-ALL. Blinatumomab may represent an important new treatment option in this setting, requiring further investigation in curative indications.
                Bookmark

                Author and article information

                Journal
                Journal of Clinical Oncology
                JCO
                American Society of Clinical Oncology (ASCO)
                0732-183X
                1527-7755
                July 20 2018
                July 20 2018
                : 36
                : 21
                : 2231-2240
                Affiliations
                [1 ]Eric J. Chow and Rebecca Gardner, Fred Hutchinson Cancer Research Center, Seattle Children’s Hospital, and University of Washington, Seattle, WA; Zoltan Antal, Weill Cornell Medical College, New York Presbyterian Hospital, and Memorial Sloan Kettering Cancer Center, New York; Louis S. Constine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY; W. Hamish Wallace, Royal Hospital for Sick Children, University of Edinburgh, Edinburgh, United Kingdom; Brent R. Weil and Jennifer M...
                Article
                10.1200/JCO.2017.76.4647
                6053298
                29874142
                e1b9dec6-2cd6-4c1b-b9a1-df7d00f2ca60
                © 2018
                History

                Comments

                Comment on this article