170
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Global increases in small ubiquitin-like modifier (SUMO)-2/3 conjugation are a neuroprotective response to severe stress but the mechanisms and specific target proteins that determine cell survival have not been identified. Here, we demonstrate that the SUMO-2/3-specific protease SENP3 is degraded during oxygen/glucose deprivation (OGD), an in vitro model of ischaemia, via a pathway involving the unfolded protein response (UPR) kinase PERK and the lysosomal enzyme cathepsin B. A key target for SENP3-mediated deSUMOylation is the GTPase Drp1, which plays a major role in regulating mitochondrial fission. We show that depletion of SENP3 prolongs Drp1 SUMOylation, which suppresses Drp1-mediated cytochrome c release and caspase-mediated cell death. SENP3 levels recover following reoxygenation after OGD allowing deSUMOylation of Drp1, which facilitates Drp1 localization at mitochondria and promotes fragmentation and cytochrome c release. RNAi knockdown of SENP3 protects cells from reoxygenation-induced cell death via a mechanism that requires Drp1 SUMOylation. Thus, we identify a novel adaptive pathway to extreme cell stress in which dynamic changes in SENP3 stability and regulation of Drp1 SUMOylation are crucial determinants of cell fate.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Lysosomal membrane permeabilization in cell death.

          Mitochondrial outer membrane permeabilization (MOMP) constitutes one of the major checkpoint(s) of apoptotic and necrotic cell death. Recently, the permeabilization of yet another organelle, the lysosome, has been shown to initiate a cell death pathway, in specific circumstances. Lysosomal membrane permeabilization (LMP) causes the release of cathepsins and other hydrolases from the lysosomal lumen to the cytosol. LMP is induced by a plethora of distinct stimuli including reactive oxygen species, lysosomotropic compounds with detergent activity, as well as some endogenous cell death effectors such as Bax. LMP is a potentially lethal event because the ectopic presence of lysosomal proteases in the cytosol causes digestion of vital proteins and the activation of additional hydrolases including caspases. This latter process is usually mediated indirectly, through a cascade in which LMP causes the proteolytic activation of Bid (which is cleaved by the two lysosomal cathepsins B and D), which then induces MOMP, resulting in cytochrome c release and apoptosome-dependent caspase activation. However, massive LMP often results in cell death without caspase activation; this cell death may adopt a subapoptotic or necrotic appearance. The regulation of LMP is perturbed in cancer cells, suggesting that specific strategies for LMP induction might lead to novel therapeutic avenues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization.

            Mitochondrial fusion and division play important roles in the regulation of apoptosis. Mitochondrial fusion proteins attenuate apoptosis by inhibiting release of cytochrome c from mitochondria, in part by controlling cristae structures. Mitochondrial division promotes apoptosis by an unknown mechanism. We addressed how division proteins regulate apoptosis using inhibitors of mitochondrial division identified in a chemical screen. The most efficacious inhibitor, mdivi-1 (for mitochondrial division inhibitor) attenuates mitochondrial division in yeast and mammalian cells by selectively inhibiting the mitochondrial division dynamin. In cells, mdivi-1 retards apoptosis by inhibiting mitochondrial outer membrane permeabilization. In vitro, mdivi-1 potently blocks Bid-activated Bax/Bak-dependent cytochrome c release from mitochondria. These data indicate the mitochondrial division dynamin directly regulates mitochondrial outer membrane permeabilization independent of Drp1-mediated division. Our findings raise the interesting possibility that mdivi-1 represents a class of therapeutics for stroke, myocardial infarction, and neurodegenerative diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice.

              Mitochondrial morphology is dynamically controlled by a balance between fusion and fission. The physiological importance of mitochondrial fission in vertebrates is less clearly defined than that of mitochondrial fusion. Here we show that mice lacking the mitochondrial fission GTPase Drp1 have developmental abnormalities, particularly in the forebrain, and die after embryonic day 12.5. Neural cell-specific (NS) Drp1(-/-) mice die shortly after birth as a result of brain hypoplasia with apoptosis. Primary culture of NS-Drp1(-/-) mouse forebrain showed a decreased number of neurites and defective synapse formation, thought to be due to aggregated mitochondria that failed to distribute properly within the cell processes. These defects were reflected by abnormal forebrain development and highlight the importance of Drp1-dependent mitochondrial fission within highly polarized cells such as neurons. Moreover, Drp1(-/-) murine embryonic fibroblasts and embryonic stem cells revealed that Drp1 is required for a normal rate of cytochrome c release and caspase activation during apoptosis, although mitochondrial outer membrane permeabilization, as examined by the release of Smac/Diablo and Tim8a, may occur independently of Drp1 activity.
                Bookmark

                Author and article information

                Journal
                EMBO J
                EMBO J
                The EMBO Journal
                Nature Publishing Group
                0261-4189
                1460-2075
                29 May 2013
                22 March 2013
                22 March 2013
                : 32
                : 11
                : 1514-1528
                Affiliations
                [1 ]School of Biochemistry, University of Bristol, University Walk , Bristol, UK
                Author notes
                [a ]School of Biochemistry, University of Bristol, University Walk , Medical Sciences Building, Bristol BS8 1TD, UK. Tel.:+44 (0)117 331 1945; Fax:+44 (0)117 331 2168; E-mail: j.m.henley@ 123456bristol.ac.uk
                Article
                emboj201365
                10.1038/emboj.2013.65
                3671254
                23524851
                e274c1c9-757c-4f3f-a701-51b37a308dd9
                Copyright © 2013, European Molecular Biology Organization

                This article is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported Licence. To view a copy of this licence visit http://creativecommons.org/licenses/by-nc-nd/3.0/.

                History
                : 09 January 2013
                : 27 February 2013
                Categories
                Article

                Molecular biology
                apoptosis,drp1,mitochondria,senp3,sumo
                Molecular biology
                apoptosis, drp1, mitochondria, senp3, sumo

                Comments

                Comment on this article