Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Involvement of GABAergic and Adrenergic Neurotransmissions on Paraventricular Nucleus of Hypothalamus in the Control of Cardiac Function

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sympathetic premotor neurons of the paraventricular hypothalamus (PVN) play a role in hemodynamics adjustments during changes in body fluid homeostasis. However, PVN contribution to the tonic control of cardiac function remains to be systematically studied. In this study, we assessed whether GABAergic and adrenergic synapses, known for being active in the PVN, are involved in the control of cardiac function. Adult male Wistar rats (250–350 g; n = 27) were anesthetized with urethane (1.2–1.4 g/kg i.p.) and underwent catheterization of femoral artery to record blood pressure and heart rate. The femoral vein was used to inject the vasoactive agents phenylephrine (10 μg/kg) and sodium nitroprusside (10 μg/kg) and to supplement anesthesia. The cardiac left ventricle was catheterized to record left ventricular pressure and its derivative. Craniotomy allowed for injections (100 nL) into the PVN of: muscimol (20 mM), bicuculline methiodide (0.4 mM), propranolol (10 mM), isoproterenol (100 μM), phentolamine (13 mM), phenylephrine (30 nM). We found that: (i) inhibition of PVN by muscimol, reduced arterial pressure, cardiac chronotropy and inotropy; (ii) disinhibition of PVN neurons by bicuculline evoked positive chronotropy and inotropy, and increase blood pressure; (iii) PVN alpha adrenergic receptors control cardiac chronotropy and inotropy; (iv) beta adrenergic receptors of the PVN do not influence cardiac function; (v) afterload does not contribute to the PVN-evoked inotropy. Our results indicate that the modulation of the activity of PVN neurons exerted by GABAergic and adrenergic mechanisms contribute to the control of cardiac function.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Functional organization of central pathways regulating the cardiovascular system.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat.

            A method that allows the concurrent localization of an antigen and a retrogradely transported fluorescent dye (true blue) was used to identify, immunohistochemically, cells in the paraventricular nucleus of the hypothalamus (PVH) that project to autonomic centers in the brainstem or in the spinal cord of the adult albino rat. After placing injections of true blue in the dorsal vagal complex or in upper thoracic segments of the spinal cord, series of evenly spaced sections through the PVH were stained with antisera directed against oxytocin, vasopressin, somatostatin, methionine-enkephalin, or leucine-encephalin. The results indicate that both oxytocin- and vasopressin-stained cells in the PVH project to the spinal cord and (or) to the dorsal vagal complex, although about three times as many oxytocin-stained cells were doubly labeled after injections centered in either terminal field. The oxytocin- and vasopressin-stained cells that give rise to these long descending projections were found primarily in caudal part of the parvocellular division of the PVH, where immunoreactive cells were shown to be significantly smaller than oxytocin- and vasopressin-stained cells in parts of the nucleus that project to the posterior pituitary. Small populations of cells in the PVH that cross-react with antisera against somatostatin, leucine-enkephalin, or methionine-enkephalin were also shown to project directly to the region of the dorsal vagal complex and to the spinal cord, and to have a unique distribution within the PVH. Collectively, the total number of doubly labeled cells that were identified in these experiments accounts for only about one-fourth of the total number of PVH neurons with long descending projections, thus suggesting that additional neuroactive substances are contained within these pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections.

              Pseudorabies virus (PRV) injections of various sympathetic ganglia and the adrenal gland were made in rats. These produced immunohistochemically detectable retrograde viral infections of ipsilateral sympathetic preganglionic neurons (SPNs) and transneuronal infections of the specific sets of second order neurons in the spinal cord and brain that innervate the infected SPNs. Five cell groups in the brain appear to regulate the entire sympathetic outflow: the paraventricular hypothalamic nucleus (PVH), A5 noradrenergic cell group, caudal raphe region, rostral ventrolateral medulla, and ventromedial medulla. In addition, local interneurons in laminae VII and X of the spinal cord are also involved. Other CNS areas also became transneuronally labeled after infections of certain sympathetic ganglia, most notably the superior cervical and stellate ganglia. These areas include the central gray matter and lateral hypothalamic area. The zona incerta was uniquely labeled after stellate ganglion infections. The cell body labeling was specific. This specificity was demonstrated in the PVH where the neurons of the parvocellular PVH that form the descending sympathetic pathway were labeled in a topographic fashion. Finally, we demonstrate that the retrograde transneuronal viral cell body labeling method can be used simultaneously with either neuropeptide transmitter or transmitter synthetic enzyme immunohistochemistry.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                04 June 2018
                2018
                : 9
                : 670
                Affiliations
                [1] 1Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás , Goiânia, Brazil
                [2] 2Neurocardiology Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle , Callaghan, NSW, Australia
                [3] 3Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte, Brazil
                Author notes

                Edited by: Camille M. Balarini, Federal University of Paraíba, Brazil

                Reviewed by: Jacqueline Kathleen Phillips, Macquarie University, Australia; Marli Cardoso Martins-Pinge, Universidade Estadual de Londrina, Brazil

                *Correspondence: Carlos H. Xavier, carlosxavier@ 123456ufg.br

                This article was submitted to Integrative Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2018.00670
                5994789
                e29c62a7-8858-4cc3-89e5-e6e878541184
                Copyright © 2018 Mendonça, Santana, da Cruz, Ianzer, Ghedini, Nalivaiko, Fontes, Ferreira, Pedrino, Colugnati and Xavier.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 February 2018
                : 14 May 2018
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 69, Pages: 14, Words: 0
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                cardiac contractility,paraventricular nucleus,autonomic nervous system,cardiac function,sympathetic nervous system

                Comments

                Comment on this article