18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Feedback from Winds and Supernovae in Massive Stellar Clusters. I: Hydrodynamics

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We use 3D hydrodynamical models to investigate the effects of massive star feedback from winds and supernovae on inhomogeneous molecular material left over from the formation of a massive stellar cluster. We simulate the interaction of the mechanical energy input from a cluster with 3 O-stars into a giant molecular cloud (GMC) clump containing 3240 solar masses of molecular material within a 4 pc radius. The cluster wind blows out of the molecular clump along low-density channels, into which denser clump material is entrained. We find that the densest molecular regions are surprisingly resistant to ablation by the cluster wind, in part due to shielding by other dense regions closer to the cluster. Nonetheless, molecular material is gradually removed by the cluster wind during which mass-loading factors in excess of several 100 are obtained. Because the clump is very porous, 60-75 per cent of the injected wind energy escapes the simulation domain, with the difference being radiated. After 4.4 Myr, the massive stars in our simulation begin to explode as supernovae. The highly structured environment into which the SN energy is released allows even weaker coupling to the remaining dense material and practically all of the SN energy reaches the wider environment. The molecular material is almost completely dispersed and destroyed after 6 Myr. The escape fraction of ionizing radiation is estimated to be about 50 per cent during the first 4 Myr of the cluster's life. A similar model with a larger and more massive GMC clump reveals the same general picture, though more time is needed for it to be destroyed.

          Related collections

          Author and article information

          Journal
          11 February 2013
          Article
          10.1093/mnras/stt255
          1302.2443
          e2bf695c-d4a3-4015-ad24-519ab9d94f8c

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          16 pages, 18 figures, accepted for publication in MNRAS
          astro-ph.SR astro-ph.GA

          Comments

          Comment on this article