31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immunomodulatory effect of an isolated fraction from Tinospora crispa on intracellular expression of INF-γ, IL-6 and IL-8

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Immunomodulators are substances that modify immune system response to a threat. Immunomodulators modulate and potentiate the immune system, keeping it highly prepared for any threat. The immunomodulatory effect of the traditional medicine Tinospora crispa is investigated in this work.

          Methods

          T. crispa ethanol extract was fractionated by using different solvents. The ethanol extract and effective isolated fraction were used to investigate the potential immunomodulatory effect of different T. crispa doses ranging from 25 μg/mL to 1000 μg/mL on RAW 246.7 cells by detecting intracellular INF-γ, IL-6, and IL-8 expressions. The antioxidant activity of T. crispa was evaluated through FRAP and DPPH. The total phenolic and total flavonoid contents were also quantified.

          Results

          Results show that T. crispa extract has higher antioxidant potential than ascorbic acid. The FRAP value of T. crispa extract is 11011.11 ± 1145.42 μmol Fe +2/g, and its DPPH inhibition percentage is 55.79 ± 7.9, with 22 μg/mL IC50. The results also reveal that the total phenolic content of T. crispa extract is 213.16- ± 1.31 mg GAE/g dry stem weight, and the total flavonoid content is 62.07- ± 39.76 mg QE/g dry stem weight. T. crispa crude extract and its isolated fraction significantly stimulate RAW264.7 cell viability ( P ≤ 0.05) and intracellular INF-γ, IL-6, and IL-8 expressions. The results of LC-MS show that four of the active compounds detected in the T. crispa isolated fraction are cordioside, quercetin, eicosenoic acid (paullinic acid), and boldine.

          Conclusions

          The results of this study obviously indicate that T. crispa has immunomodulatory effects through the stimulation of INF-γ, IL-6, and IL-8 expressions. LC-MS phytochemical analysis showed that the T. crispa fraction has cordioside, quercetin, eicosenoic acid (paullinic acid), and boldine, which may be responsible for the immunostimulator effect of T. crispa.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          A review on the dietary flavonoid kaempferol.

          Epidemiological studies have revealed that a diet rich in plant-derived foods has a protective effect on human health. Identifying bioactive dietary constituents is an active area of scientific investigation that may lead to new drug discovery. Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many edible plants (e.g. tea, broccoli, cabbage, kale, beans, endive, leek, tomato, strawberries and grapes) and in plants or botanical products commonly used in traditional medicine (e.g. Ginkgo biloba, Tilia spp, Equisetum spp, Moringa oleifera, Sophora japonica and propolis). Some epidemiological studies have found a positive association between the consumption of foods containing kaempferol and a reduced risk of developing several disorders such as cancer and cardiovascular diseases. Numerous preclinical studies have shown that kaempferol and some glycosides of kaempferol have a wide range of pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, cardioprotective, neuroprotective, antidiabetic, anti-osteoporotic, estrogenic/antiestrogenic, anxiolytic, analgesic and antiallergic activities. In this article, the distribution of kaempferol in the plant kingdom and its pharmacological properties are reviewed. The pharmacokinetics (e.g. oral bioavailability, metabolism, plasma levels) and safety of kaempferol are also analyzed. This information may help understand the health benefits of kaempferol-containing plants and may contribute to develop this flavonoid as a possible agent for the prevention and treatment of some diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytokines in acute and chronic inflammation.

            Inflammation is mediated by a variety of soluble factors, including a group of secreted polypeptides known as cytokines. Inflammatory cytokines can be divided into two groups: those involved in acute inflammation and those responsible for chronic inflammation. This review describes the role played in acute inflammation by IL-1, TNF-alpha, IL-6, IL-11, IL-8 and other chemokines, G-CSF, and GM-CSF. It also describes the involvement of cytokines in chronic inflammation. This latter group can be subdivided into cytokines mediating humoral responses such as IL-4, IL-5, IL-6, IL-7, and IL-13, and those mediating cellular responses such as IL-1, IL-2, IL-3, IL-4, IL-7, IL-9, IL-10, IL-12, interferons, transforming growth factor-beta, and tumor necrosis factor alpha and beta. Some cytokines, such as IL-1, significantly contribute to both acute and chronic inflammation. This review also summarizes features of the cell-surface receptors that mediate the inflammatory effects of the described cytokines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases.

              Fifteen years have passed since the first description of interleukin (IL)-8/CXCL8 as a potent neutrophil chemotactic factor. Accumulating evidence has demonstrated that various types of cells can produce a large amount of IL-8/CXCL8 in response to a wide variety of stimuli, including proinflammatory cytokines, microbes and their products, and environmental changes such as hypoxia, reperfusion, and hyperoxia. Numerous observations have established IL-8/CXCL8 as a key mediator in neutrophil-mediated acute inflammation due to its potent actions on neutrophils. However, several lines of evidence indicate that IL-8/CXCL8 has a wide range of actions on various types of cells, including lymphocytes, monocytes, endothelial cells, and fibroblasts, besides neutrophils. The discovery of these biological functions suggests that IL-8/CXCL8 has crucial roles in various pathological conditions such as chronic inflammation and cancer. Here, an overview of its protein structure, mechanisms of production, and receptor system will be discussed as well as the pathophysiological roles of IL-8/CXCL8 in various types of lung pathologies.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Complement Altern Med
                BMC Complement Altern Med
                BMC Complementary and Alternative Medicine
                BioMed Central
                1472-6882
                2014
                27 June 2014
                : 14
                : 205
                Affiliations
                [1 ]Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
                [2 ]Department of Microbiology and Immunology, Faculty of Medicine, University of Diyala, Baqubah, Iraq
                [3 ]Department of Molecular medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
                [4 ]Institute of Biological Science, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
                Article
                1472-6882-14-205
                10.1186/1472-6882-14-205
                4227069
                24969238
                e4d63c4c-5ef2-4597-8467-adb637324107
                Copyright © 2014 Abood et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 2 January 2014
                : 23 June 2014
                Categories
                Research Article

                Complementary & Alternative medicine
                il-6,il-8,immunomodulatory,inf-γ,tinospora crispa
                Complementary & Alternative medicine
                il-6, il-8, immunomodulatory, inf-γ, tinospora crispa

                Comments

                Comment on this article