10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dysregulation of Inflammasome Priming and Activation by MicroRNAs in Human Immune-Mediated Diseases

      , ,
      The Journal of Immunology
      The American Association of Immunologists

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Therapeutic miRNA and siRNA: Moving from Bench to Clinic as Next Generation Medicine

          In the past few years, therapeutic microRNA (miRNA) and small interfering RNA (siRNA) are some of the most important biopharmaceuticals that are in commercial space as future medicines. This review summarizes the patents of miRNA- and siRNA-based new drugs, and also provides a snapshot about significant biopharmaceutical companies that are investing for the therapeutic development of miRNA and siRNA molecules. An insightful view about individual siRNA and miRNA drugs has been depicted with their present status, which is gaining attention in the therapeutic landscape. The efforts of the biopharmaceuticals are discussed with the status of their preclinical and/or clinical trials. Here, some of the setbacks have been highlighted during the biopharmaceutical development of miRNA and siRNA as individual therapeutics. Finally, a snapshot is illustrated about pharmacokinetics, pharmacodynamics with absorption, distribution, metabolism, and excretion (ADME), which is the fundamental development process of these therapeutics, as well as the delivery system for miRNA- and siRNA-based drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of deadenylation-dependent decay.

            Degradation of messenger RNAs (mRNAs) plays an essential role in modulation of gene expression and in quality control of mRNA biogenesis. Nearly all major mRNA decay pathways characterized thus far in eukaryotes are initiated by deadenylation, i.e., shortening of the mRNA 3(') poly(A) tail. Deadenylation is often a rate-limiting step for mRNA degradation and translational silencing, making it an important control point for both processes. In this review, we discuss the fundamental principles that govern mRNA deadenylation in eukaryotes. We use several major mRNA decay pathways in mammalian cells to illustrate mechanisms and regulation of deadenylation-dependent mRNA decay, including decay directed by adenine/uridine-rich elements (AREs) in the 3(') -untranslated region (UTR), the rapid decay mediated by destabilizing elements in protein-coding regions, the surveillance mechanism that detects and degrades nonsense-containing mRNA [i.e., nonsense-mediated decay (NMD)], the decay directed by miRNAs, and the default decay pathway for stable messages. Mammalian mRNA deadenylation involves two consecutive phases mediated by the PAN2-PAN3 and the CCR4-CAF1 complexes, respectively. Decapping takes place after deadenylation and may serve as a backup mechanism to trigger mRNA decay if initial deadenylation is compromised. In addition, we discuss how deadenylation impacts the dynamics of RNA processing bodies (P-bodies), where nontranslatable mRNAs can be degraded or stored. Possible models for mechanisms of various deadenylation-dependent mRNA decay pathways are also discussed. Copyright © 2010 John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              NLRP3: A promising therapeutic target for autoimmune diseases

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                The Journal of Immunology
                J.I.
                The American Association of Immunologists
                0022-1767
                1550-6606
                April 08 2019
                April 15 2019
                April 08 2019
                April 15 2019
                : 202
                : 8
                : 2177-2187
                Article
                10.4049/jimmunol.1801416
                30962309
                e50b2b3e-2538-426a-b736-94b5663bd29b
                © 2019
                History

                Comments

                Comment on this article