11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Crystal structures of a ZIP zinc transporter reveal a binuclear metal center in the transport pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Structures of a ZIP zinc transporter reveal an inward-open conformation with a binuclear metal center in the transport pathway.

          Abstract

          Zrt/Irt-like proteins (ZIPs) play fundamental roles in metal metabolism/homeostasis and are broadly involved in numerous physiological and pathological processes. The lack of high-resolution structure of the ZIPs hinders understanding of the metal transport mechanism. We report two crystal structures of a prokaryotic ZIP in lipidic cubic phase with bound metal substrates (Cd 2+ at 2.7 Å and Zn 2+ at 2.4 Å). The structures revealed a novel 3+2+3TM architecture and an inward-open conformation occluded at the extracellular side. Two metal ions were trapped halfway through the membrane, unexpectedly forming a binuclear metal center. The Zn 2+-substituted structure suggested asymmetric functions of the two metal-binding sites and also revealed a route for zinc release. Mapping of disease-causing mutations, structure-guided mutagenesis, and cell-based zinc transport assay demonstrated the crucial role of the binuclear metal center for human ZIP4. A metal transport mechanism for the ZIP from Bordetella bronchiseptica was proposed, which is likely applicable to other ZIPs.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Mammalian zinc transporters: nutritional and physiologic regulation.

          Research advances defining how zinc is transported into and out of cells and organelles have increased exponentially within the past five years. Research has progressed through application of molecular techniques including genomic analysis, cell transfection, RNA interference, kinetic analysis of ion transport, and application of cell and animal models including knockout mice. The knowledge base has increased for most of 10 members of the ZnT family and 14 members of the Zrt-, Irt-like protein (ZIP) family. Relative to the handling of dietary zinc is the involvement of ZnT1, ZIP4, and ZIP5 in intestinal zinc transport, involvement of ZIP10 and ZnT1 in renal zinc reabsorption, and the roles of ZIP5, ZnT2, and ZnT1 in pancreatic release of endogenous zinc. These events are major factors in regulation of zinc homeostasis. Other salient findings are the involvement of ZnT2 in lactation, ZIP14 in the hypozincemia of inflammation, ZIP6, ZIP7, and ZIP10 in metastatic breast cancer, and ZnT8 in insulin processing and as an autoantigen in diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis.

            Osteoarthritis (OA), primarily characterized by cartilage degeneration, is caused by an imbalance between anabolic and catabolic factors. Here, we investigated the role of zinc (Zn2+) homeostasis, Zn2+ transporters, and Zn(2+)-dependent transcription factors in OA pathogenesis. Among Zn2+ transporters, the Zn2+ importer ZIP8 was specifically upregulated in OA cartilage of humans and mice, resulting in increased levels of intracellular Zn2+ in chondrocytes. ZIP8-mediated Zn2+ influx upregulated the expression of matrix-degrading enzymes (MMP3, MMP9, MMP12, MMP13, and ADAMTS5) in chondrocytes. Ectopic expression of ZIP8 in mouse cartilage tissue caused OA cartilage destruction, whereas Zip8 knockout suppressed surgically induced OA pathogenesis, with concomitant modulation of Zn2+ influx and matrix-degrading enzymes. Furthermore, MTF1 was identified as an essential transcription factor in mediating Zn2+/ZIP8-induced catabolic factor expression, and genetic modulation of Mtf1 in mice altered OA pathogenesis. We propose that the zinc-ZIP8-MTF1 axis is an essential catabolic regulator of OA pathogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidation of methane by a biological dicopper center

              Vast world reserves of methane gas are underutilized as a feedstock for production of liquid fuels and chemicals due to the lack of economical and sustainable strategies for selective oxidation to methanol1. Current processes to activate the strong C–H bond (104 kcal/mol) in methane require high temperatures, are costly and inefficient, and produce waste2. In nature, methanotrophic bacteria perform this reaction under ambient conditions using metalloenzymes called methane monooxygenases (MMOs). MMOs are thus the optimal inspiration for an efficient, green catalyst3. There are two types of MMOs. Soluble MMO (sMMO), which is expressed by several strains of methanotrophs under copper limited conditions, oxidizes methane with a well characterized catalytic diiron center4. Particulate methane monooxygenase (pMMO), an integral membrane metalloenzyme produced by all methanotrophs, is composed of three subunits, pmoA, pmoB, and pmoC, arranged in a trimeric α3β3γ3 complex5. Despite 20 years of research and the availability of two crystal structures, the metal composition and location of the pMMO metal active site are not known. Here we show that pMMO activity is dependent on copper, not iron, and that the copper active site is located in the soluble domains of the pmoB subunit rather than within the membrane. Recombinant soluble fragments of pmoB (spmoB) bind copper and exhibit propylene and methane oxidation activities. Disruption of each copper center in spmoB by mutagenesis indicates that the active site is a dicopper center. These findings resolve the pMMO controversy and provide a promising new approach to developing environmentally friendly C–H oxidation catalysts.
                Bookmark

                Author and article information

                Journal
                Sci Adv
                Sci Adv
                SciAdv
                advances
                Science Advances
                American Association for the Advancement of Science
                2375-2548
                August 2017
                25 August 2017
                : 3
                : 8
                : e1700344
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
                [2 ]Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
                Author notes
                [* ]Corresponding author. Email: hujian1@ 123456msu.edu
                Author information
                http://orcid.org/0000-0002-0900-9285
                http://orcid.org/0000-0002-5668-542X
                http://orcid.org/0000-0001-6657-9826
                Article
                1700344
                10.1126/sciadv.1700344
                5573306
                28875161
                e54757cc-625d-4cee-9c04-affb91525dcd
                Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

                History
                : 01 February 2017
                : 26 July 2017
                Funding
                Funded by: doi http://dx.doi.org/10.13039/100000057, National Institute of General Medical Sciences;
                Award ID: award326560
                Award ID: GM115373
                Categories
                Research Article
                Research Articles
                SciAdv r-articles
                Life Sciences
                Biochemistry
                Custom metadata
                Nielsen Santos

                Comments

                Comment on this article