14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Complex network measures of brain connectivity: uses and interpretations.

          Brain connectivity datasets comprise networks of brain regions connected by anatomical tracts or by functional associations. Complex network analysis-a new multidisciplinary approach to the study of complex systems-aims to characterize these brain networks with a small number of neurobiologically meaningful and easily computable measures. In this article, we discuss construction of brain networks from connectivity data and describe the most commonly used network measures of structural and functional connectivity. We describe measures that variously detect functional integration and segregation, quantify centrality of individual brain regions or pathways, characterize patterns of local anatomical circuitry, and test resilience of networks to insult. We discuss the issues surrounding comparison of structural and functional network connectivity, as well as comparison of networks across subjects. Finally, we describe a Matlab toolbox (http://www.brain-connectivity-toolbox.net) accompanying this article and containing a collection of complex network measures and large-scale neuroanatomical connectivity datasets. Copyright (c) 2009 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cortical surface-based analysis. I. Segmentation and surface reconstruction.

            Several properties of the cerebral cortex, including its columnar and laminar organization, as well as the topographic organization of cortical areas, can only be properly understood in the context of the intrinsic two-dimensional structure of the cortical surface. In order to study such cortical properties in humans, it is necessary to obtain an accurate and explicit representation of the cortical surface in individual subjects. Here we describe a set of automated procedures for obtaining accurate reconstructions of the cortical surface, which have been applied to data from more than 100 subjects, requiring little or no manual intervention. Automated routines for unfolding and flattening the cortical surface are described in a companion paper. These procedures allow for the routine use of cortical surface-based analysis and visualization methods in functional brain imaging. Copyright 1999 Academic Press.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Complex brain networks: graph theoretical analysis of structural and functional systems.

              Recent developments in the quantitative analysis of complex networks, based largely on graph theory, have been rapidly translated to studies of brain network organization. The brain's structural and functional systems have features of complex networks--such as small-world topology, highly connected hubs and modularity--both at the whole-brain scale of human neuroimaging and at a cellular scale in non-human animals. In this article, we review studies investigating complex brain networks in diverse experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans) and provide an accessible introduction to the basic principles of graph theory. We also highlight some of the technical challenges and key questions to be addressed by future developments in this rapidly moving field.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Neuroscience
                Nat Neurosci
                Springer Science and Business Media LLC
                1097-6256
                1546-1726
                October 19 2020
                Article
                10.1038/s41593-020-00719-y
                33077948
                e57b1833-2d4e-4059-8f0e-41c6dc4f5e75
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article