Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Developmental origins of the metabolic syndrome: prediction, plasticity, and programming.

      Physiological reviews
      Aging, Animals, Epigenesis, Genetic, Humans, Metabolic Syndrome X, embryology, genetics, Models, Biological, Phenotype

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The "fetal" or "early" origins of adult disease hypothesis was originally put forward by David Barker and colleagues and stated that environmental factors, particularly nutrition, act in early life to program the risks for adverse health outcomes in adult life. This hypothesis has been supported by a worldwide series of epidemiological studies that have provided evidence for the association between the perturbation of the early nutritional environment and the major risk factors (hypertension, insulin resistance, and obesity) for cardiovascular disease, diabetes, and the metabolic syndrome in adult life. It is also clear from experimental studies that a range of molecular, cellular, metabolic, neuroendocrine, and physiological adaptations to changes in the early nutritional environment result in a permanent alteration of the developmental pattern of cellular proliferation and differentiation in key tissue and organ systems that result in pathological consequences in adult life. This review focuses on those experimental studies that have investigated the critical windows during which perturbations of the intrauterine environment have major effects, the nature of the epigenetic, structural, and functional adaptive responses which result in a permanent programming of cardiovascular and metabolic function, and the role of the interaction between the pre- and postnatal environment in determining final health outcomes.

          Related collections

          Author and article information

          Journal
          15788706
          10.1152/physrev.00053.2003

          Chemistry
          Aging,Animals,Epigenesis, Genetic,Humans,Metabolic Syndrome X,embryology,genetics,Models, Biological,Phenotype

          Comments

          Comment on this article