66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      LC–MS Proteomics Analysis of the Insulin/IGF-1-Deficient Caenorhabditis elegans daf-2(e1370) Mutant Reveals Extensive Restructuring of Intermediary Metabolism

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The insulin/IGF-1 receptor is a major known determinant of dauer formation, stress resistance, longevity, and metabolism in Caenorhabditis elegans. In the past, whole-genome transcript profiling was used extensively to study differential gene expression in response to reduced insulin/IGF-1 signaling, including the expression levels of metabolism-associated genes. Taking advantage of the recent developments in quantitative liquid chromatography mass spectrometry (LC–MS)-based proteomics, we profiled the proteomic changes that occur in response to activation of the DAF-16 transcription factor in the germline-less glp-4(bn2); daf-2(e1370) receptor mutant. Strikingly, the daf-2 profile suggests extensive reorganization of intermediary metabolism, characterized by the upregulation of many core intermediary metabolic pathways. These include glycolysis/gluconeogenesis, glycogenesis, pentose phosphate cycle, citric acid cycle, glyoxylate shunt, fatty acid β-oxidation, one-carbon metabolism, propionate and tyrosine catabolism, and complexes I, II, III, and V of the electron transport chain. Interestingly, we found simultaneous activation of reciprocally regulated metabolic pathways, which is indicative of spatiotemporal coordination of energy metabolism and/or extensive post-translational regulation of these enzymes. This restructuring of daf-2 metabolism is reminiscent to that of hypometabolic dauers, allowing the efficient and economical utilization of internal nutrient reserves and possibly also shunting metabolites through alternative energy-generating pathways to sustain longevity.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans.

          A C. elegans neurosecretory signaling system regulates whether animals enter the reproductive life cycle or arrest development at the long-lived dauer diapause stage. daf-2, a key gene in the genetic pathway that mediates this endocrine signaling, encodes an insulin receptor family member. Decreases in DAF-2 signaling induce metabolic and developmental changes, as in mammalian metabolic control by the insulin receptor. Decreased DAF-2 signaling also causes an increase in life-span. Life-span regulation by insulin-like metabolic control is analogous to mammalian longevity enhancement induced by caloric restriction, suggesting a general link between metabolism, diapause, and longevity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans.

            Many conditions that shift cells from states of nutrient utilization and growth to states of cell maintenance extend lifespan. We have carried out a systematic lifespan analysis of conditions that inhibit protein synthesis. We find that reducing the levels of ribosomal proteins, ribosomal-protein S6 kinase or translation-initiation factors increases the lifespan of Caenorhabditis elegans. These perturbations, as well as inhibition of the nutrient sensor target of rapamycin (TOR), which is known to increase lifespan, all increase thermal-stress resistance. Thus inhibiting translation may extend lifespan by shifting cells to physiological states that favor maintenance and repair. Interestingly, different types of translation inhibition lead to one of two mutually exclusive outputs, one that increases lifespan and stress resistance through the transcription factor DAF-16/FOXO, and one that increases lifespan and stress resistance independently of DAF-16. Our findings link TOR, but not sir-2.1, to the longevity response induced by dietary restriction (DR) in C. elegans, and they suggest that neither TOR inhibition nor DR extends lifespan simply by reducing protein synthesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Integrated genomic and proteomic analyses of gene expression in Mammalian cells.

              Using DNA microarrays together with quantitative proteomic techniques (ICAT reagents, two-dimensional DIGE, and MS), we evaluated the correlation of mRNA and protein levels in two hematopoietic cell lines representing distinct stages of myeloid differentiation, as well as in the livers of mice treated for different periods of time with three different peroxisome proliferative activated receptor agonists. We observe that the differential expression of mRNA (up or down) can capture at most 40% of the variation of protein expression. Although the overall pattern of protein expression is similar to that of mRNA expression, the incongruent expression between mRNAs and proteins emphasize the importance of posttranscriptional regulatory mechanisms in cellular development or perturbation that can be unveiled only through integrated analyses of both proteins and mRNAs.
                Bookmark

                Author and article information

                Journal
                J Proteome Res
                J. Proteome Res
                pr
                jprobs
                Journal of Proteome Research
                American Chemical Society
                1535-3893
                1535-3907
                20 February 2015
                20 February 2014
                04 April 2014
                : 13
                : 4
                : 1938-1956
                Affiliations
                []Biology Department, Ghent University , Proeftuinstraat 86 N1, B-9000 Ghent, Belgium
                []Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
                Author notes
                [* ]E-mail: Bart.Braeckman@ 123456UGent.be . Tel: +32.9.264.8744. Fax: +32.9.264.8793.
                Article
                10.1021/pr401081b
                3993954
                24555535
                e60b792e-4470-49ba-8dee-605ee046e9f4
                Copyright © 2014 American Chemical Society
                History
                : 04 November 2013
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                pr401081b
                pr-2013-01081b

                Molecular biology
                caenorhabditis elegans,gene expression,mass spectrometry,metabolism,physiology,aging
                Molecular biology
                caenorhabditis elegans, gene expression, mass spectrometry, metabolism, physiology, aging

                Comments

                Comment on this article