67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Inside the brain of an elite athlete: the neural processes that support high achievement in sports

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Events like the World Championships in athletics and the Olympic Games raise the public profile of competitive sports. They may also leave us wondering what sets the competitors in these events apart from those of us who simply watch. Here we attempt to link neural and cognitive processes that have been found to be important for elite performance with computational and physiological theories inspired by much simpler laboratory tasks. In this way we hope to inspire neuroscientists to consider how their basic research might help to explain sporting skill at the highest levels of performance.

          Related collections

          Most cited references141

          • Record: found
          • Abstract: not found
          • Article: not found

          The role of deliberate practice in the acquisition of expert performance.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bayesian integration in sensorimotor learning.

            When we learn a new motor skill, such as playing an approaching tennis ball, both our sensors and the task possess variability. Our sensors provide imperfect information about the ball's velocity, so we can only estimate it. Combining information from multiple modalities can reduce the error in this estimate. On a longer time scale, not all velocities are a priori equally probable, and over the course of a match there will be a probability distribution of velocities. According to bayesian theory, an optimal estimate results from combining information about the distribution of velocities-the prior-with evidence from sensory feedback. As uncertainty increases, when playing in fog or at dusk, the system should increasingly rely on prior knowledge. To use a bayesian strategy, the brain would need to represent the prior distribution and the level of uncertainty in the sensory feedback. Here we control the statistical variations of a new sensorimotor task and manipulate the uncertainty of the sensory feedback. We show that subjects internally represent both the statistical distribution of the task and their sensory uncertainty, combining them in a manner consistent with a performance-optimizing bayesian process. The central nervous system therefore employs probabilistic models during sensorimotor learning.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The neural basis of decision making.

              The study of decision making spans such varied fields as neuroscience, psychology, economics, statistics, political science, and computer science. Despite this diversity of applications, most decisions share common elements including deliberation and commitment. Here we evaluate recent progress in understanding how these basic elements of decision formation are implemented in the brain. We focus on simple decisions that can be studied in the laboratory but emphasize general principles likely to extend to other settings.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Neuroscience
                Nat Rev Neurosci
                Springer Science and Business Media LLC
                1471-003X
                1471-0048
                August 2009
                July 01 2009
                August 2009
                : 10
                : 8
                : 585-596
                Article
                10.1038/nrn2672
                19571792
                e64db3de-7564-487e-a3c2-834100207bab
                © 2009

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article