14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Traumatic Brain Injury and Blood–Brain Barrier (BBB): Underlying Pathophysiological Mechanisms and the Influence of Cigarette Smoking as a Premorbid Condition

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Traumatic brain injury (TBI) is among the most pressing global health issues and prevalent causes of cerebrovascular and neurological disorders all over the world. In addition to the brain injury, TBI may also alter the systemic immune response. Thus, TBI patients become vulnerable to infections, have worse neurological outcomes, and exhibit a higher rate of mortality and morbidity. It is well established that brain injury leads to impairments of the blood–brain barrier (BBB) integrity and function, contributing to the loss of neural tissue and affecting the response to neuroprotective drugs. Thus, stabilization/protection of the BBB after TBI could be a promising strategy to limit neuronal inflammation, secondary brain damage, and acute neurodegeneration. Herein, we present a review highlighting the significant post-traumatic effects of TBI on the cerebrovascular system. These include the loss of BBB integrity and selective permeability, impact on BBB transport mechanisms, post-traumatic cerebral edema formation, and significant pathophysiological factors that may further exacerbate post-traumatic BBB dysfunctions. Furthermore, we discuss the post-traumatic impacts of chronic smoking, which has been recently shown to act as a premorbid condition that impairs post-TBI recovery. Indeed, understanding the underlying molecular mechanisms associated with TBI damage is essential to better understand the pathogenesis and progression of post-traumatic secondary brain injury and the development of targeted treatments to improve outcomes and speed up the recovery process. Therapies aimed at restoring/protecting the BBB may reduce the post-traumatic burden of TBI by minimizing the impairment of brain homeostasis and help to restore an optimal microenvironment to support neuronal repair.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: found
          • Article: not found

          21st-Century Hazards of Smoking and Benefits of Cessation in the United States

          Extrapolation from studies in the 1980s suggests that smoking causes 25% of deaths among women and men 35 to 69 years of age in the United States. Nationally representative measurements of the current risks of smoking and the benefits of cessation at various ages are unavailable. We obtained smoking and smoking-cessation histories from 113,752 women and 88,496 men 25 years of age or older who were interviewed between 1997 and 2004 in the U.S. National Health Interview Survey and related these data to the causes of deaths that occurred by December 31, 2006 (8236 deaths in women and 7479 in men). Hazard ratios for death among current smokers, as compared with those who had never smoked, were adjusted for age, educational level, adiposity, and alcohol consumption. For participants who were 25 to 79 years of age, the rate of death from any cause among current smokers was about three times that among those who had never smoked (hazard ratio for women, 3.0; 99% confidence interval [CI], 2.7 to 3.3; hazard ratio for men, 2.8; 99% CI, 2.4 to 3.1). Most of the excess mortality among smokers was due to neoplastic, vascular, respiratory, and other diseases that can be caused by smoking. The probability of surviving from 25 to 79 years of age was about twice as great in those who had never smoked as in current smokers (70% vs. 38% among women and 61% vs. 26% among men). Life expectancy was shortened by more than 10 years among the current smokers, as compared with those who had never smoked. Adults who had quit smoking at 25 to 34, 35 to 44, or 45 to 54 years of age gained about 10, 9, and 6 years of life, respectively, as compared with those who continued to smoke. Smokers lose at least one decade of life expectancy, as compared with those who have never smoked. Cessation before the age of 40 years reduces the risk of death associated with continued smoking by about 90%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuronal Cell Death.

            Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury.

              Astroglial scars surround damaged tissue after trauma, stroke, infection, or autoimmune inflammation in the CNS. They are essential for wound repair, but also interfere with axonal regrowth. A better understanding of the cellular mechanisms, regulation, and functions of astroglial scar formation is fundamental to developing safe interventions for many CNS disorders. We used wild-type and transgenic mice to quantify and dissect these parameters. Adjacent to crush spinal cord injury (SCI), reactive astrocytes exhibited heterogeneous phenotypes as regards proliferation, morphology, and chemistry, which all varied with distance from lesions. Mature scar borders at 14 d after SCI consisted primarily of newly proliferated astroglia with elongated cell processes that surrounded large and small clusters of inflammatory, fibrotic, and other cells. During scar formation from 5 to 14 d after SCI, cell processes deriving from different astroglia associated into overlapping bundles that quantifiably reoriented and organized into dense mesh-like arrangements. Selective deletion of STAT3 from astroglia quantifiably disrupted the organization of elongated astroglia into scar borders, and caused a failure of astroglia to surround inflammatory cells, resulting in increased spread of these cells and neuronal loss. In cocultures, wild-type astroglia spontaneously corralled inflammatory or fibromeningeal cells into segregated clusters, whereas STAT3-deficient astroglia failed to do so. These findings demonstrate heterogeneity of reactive astroglia and show that scar borders are formed by newly proliferated, elongated astroglia, which organize via STAT3-dependent mechanisms to corral inflammatory and fibrotic cells into discrete areas separated from adjacent tissue that contains viable neurons.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                14 April 2020
                April 2020
                : 21
                : 8
                : 2721
                Affiliations
                [1 ]Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; farzane.sivandzade@ 123456ttuhsc.edu
                [2 ]Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; afaleh@ 123456KSU.EDU.SA
                [3 ]Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
                Author notes
                [* ]Correspondence: luca.cucullo@ 123456ttuhsc.edu ; Tel.: +806-414-9237
                Author information
                https://orcid.org/0000-0001-8649-3712
                https://orcid.org/0000-0003-3924-593X
                https://orcid.org/0000-0002-2827-7162
                Article
                ijms-21-02721
                10.3390/ijms21082721
                7215684
                32295258
                e65ca6aa-c7c4-4444-9ae9-69fd1d357b42
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 April 2020
                : 12 April 2020
                Categories
                Review

                Molecular biology
                traumatic brain injury,blood–brain barrier,oxidative stress,cigarette smoke,neuroinflammation,excitotoxicity

                Comments

                Comment on this article