+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women.

      Journal of Bone and Mineral Research
      Adolescent, Adult, Body Weight, Calcitriol, blood, Calcium, urine, Diet, Female, Fibroblast Growth Factors, metabolism, Humans, Immunoassay, Male, Middle Aged, Parathyroid Hormone, Phosphates, administration & dosage, Sodium

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          FGF-23 is a novel regulator of phosphate metabolism. We studied the regulation of FGF-23 by dietary phosphate in 66 men and women using two assays. Dietary phosphate restriction decreased FGF-23 and loading increased FGF-23 significantly. An assay that measured intact FGF-23 showed the effects of dietary phosphate much more clearly than an assay that also measures presumed biologically inactive fragments. Dietary phosphate is a key regulator of circulating FGF-23; choice of assay is critical when studying FGF-23 physiology. Fibroblast growth factor 23 (FGF-23) is a novel phosphaturic factor discovered through genetic studies of patients with renal phosphate wasting disorders. Ablation of the FGF-23 gene in mice reduces renal phosphate excretion and increases serum phosphate, suggesting that FGF-23 is critical for normal phosphate homeostasis. We examined the role of dietary phosphate in the regulation of FGF-23 in humans. Sixty-six healthy males and females were randomized to either phosphate-depleted or -loaded diets for 5 days, after a 4-day run-in diet. FGF-23 was measured using an "intact" assay that only detects intact FGF-23 peptide and with a "C-terminal" assay that measures both intact FGF-23 peptide and presumed biologically inactive carboxyl terminal fragments. The main outcome was the within group change in FGF-23 with either phosphate depletion or loading. Using the intact FGF-23 assay, mean FGF-23 area under the curve (AUC) decreased by 9 +/- 16% with phosphate depletion (p = 0.0041) and increased by 35 +/- 29% with loading (p < 0.0001). Using the C-terminal FGF-23 assay, mean FGF-23 AUC decreased by 8 +/- 12% with phosphate depletion (p = 0.0003) and increased by 13 +/- 20% with loading (p = 0.0016). Increases in FGF-23 with phosphate loading were greater with the intact assay than with the C-terminal assay (p = 0.0003). Using the intact assay only, FGF-23 was significantly associated with serum phosphate (r = 0.39, p < 0.01), 24-h urinary phosphate (r = 0.47, p < 0.01), fractional excretion of phosphate (r = 0.29, p < 0.01), and 1,25-dihydroxyvitamin D (r = -0.30, p < 0.01). The association between the assays was weak (r = 0.26, p < 0.01). Dietary phosphate is a key regulator of circulating FGF-23 levels in humans. Additionally, choice of assay is critical when performing physiologic investigations of FGF-23.

          Related collections

          Author and article information


          Comment on this article