Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interaction of Insecticides and Fungicides in Bees

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Honeybees and wild bees are among the most important pollinators of both wild and cultivated landscapes. In recent years, however, a significant decline in these pollinators has been recorded. This decrease can have many causes including the heavy use of biocidal plant protection products in agriculture. The most frequent residues in bee products originate from fungicides, while neonicotinoids and, to a lesser extent, pyrethroids are among the most popular insecticides detected in bee products. There is abundant evidence of toxic side effects on honeybees and wild bees produced by neonicotinoids, but only few studies have investigated side effects of fungicides, because they are generally regarded as not being harmful for bees. In the field, a variety of substances are taken up by bees including mixtures of insecticides and fungicides, and their combinations can be lethal for these pollinators, depending on the specific group of insecticide or fungicide. This review discusses the different combinations of major insecticide and fungicide classes and their effects on honeybees and wild bees. Fungicides inhibiting the sterol biosynthesis pathway can strongly increase the toxicity of neonicotinoids and pyrethroids. Other fungicides, in contrast, do not appear to enhance toxicity when combined with neonicotinoid or pyrethroid insecticides. But the knowledge on possible interactions of fungicides not inhibiting the sterol biosynthesis pathway and insecticides is poor, particularly in wild bees, emphasizing the need for further studies on possible effects of insecticide-fungicide interactions in bees.

          Related collections

          Most cited references168

          • Record: found
          • Abstract: found
          • Article: not found

          Biodiversity hotspots for conservation priorities.

          Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Importance of pollinators in changing landscapes for world crops.

            The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global pollinator declines: trends, impacts and drivers.

              Pollinators are a key component of global biodiversity, providing vital ecosystem services to crops and wild plants. There is clear evidence of recent declines in both wild and domesticated pollinators, and parallel declines in the plants that rely upon them. Here we describe the nature and extent of reported declines, and review the potential drivers of pollinator loss, including habitat loss and fragmentation, agrochemicals, pathogens, alien species, climate change and the interactions between them. Pollinator declines can result in loss of pollination services which have important negative ecological and economic impacts that could significantly affect the maintenance of wild plant diversity, wider ecosystem stability, crop production, food security and human welfare. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Insect Sci
                Front Insect Sci
                Front. Insect Sci.
                Frontiers in Insect Science
                Frontiers Media S.A.
                2673-8600
                2673-8600
                25 January 2022
                2021
                : 1
                : 808335
                Affiliations
                [1] 1Behavioral Physiology and Sociobiology, University of Würzburg , Würzburg, Germany
                [2] 2Institute of Biology and Environmental Sciences, University of Oldenburg , Oldenburg, Germany
                Author notes

                Edited by: Oliver Otti, University of Bayreuth, Germany

                Reviewed by: Cristian Villagra, Universidad Metropolitana de Ciencias de la Educación, Chile; Chunsheng Hou, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences (CAAS), China

                *Correspondence: Antonia Schuhmann antonia.schuhmann@ 123456uni-wuerzburg.de

                This article was submitted to Insect Health and Pathology, a section of the journal Frontiers in Insect Science

                Article
                10.3389/finsc.2021.808335
                10926390
                38468891
                e74fad15-f018-4cf9-afa9-eba05e38e74b
                Copyright © 2022 Schuhmann, Schmid, Manzer, Schulte and Scheiner.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 November 2021
                : 29 December 2021
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 178, Pages: 14, Words: 12382
                Categories
                Insect Science
                Review

                insecticide,fungicide,honeybee,wild bee,interaction,synergistic effects,neonicotinoid

                Comments

                Comment on this article

                scite_

                Similar content299

                Cited by7

                Most referenced authors1,851