17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Proteomic Profiling of Mouse Liver following Acute Toxoplasma gondii Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Toxoplasma gondii remains a global public health problem. However, its pathophysiology is still not-completely understood particularly the impact of infection on host liver metabolism. We performed iTRAQ-based proteomic analysis to evaluate early liver protein responses in BALB/c mice following infection with T. gondii PYS strain (genotype ToxoDB#9) infection. Our data revealed modification of protein expression in key metabolic pathways, as indicated by the upregulation of immune response and downregulation of mitochondrial respiratory chain, and the metabolism of fatty acids, lipids and xenobiotics. T. gondii seems to hijack host PPAR signaling pathway to downregulate the metabolism of fatty acids, lipids and energy in the liver. The metabolism of over 400 substances was affected by the downregulation of genes involved in xenobiotic metabolism. The top 10 transcription factors used by upregulated genes were Stat2, Stat1, Irf2, Irf1, Sp2, Egr1, Stat3, Klf4, Elf1 and Gabpa, while the top 10 transcription factors of downregulated genes were Hnf4A, Ewsr1, Fli1, Hnf4g, Nr2f1, Pparg, Rxra, Hnf1A, Foxa1 and Foxo1. These findings indicate global reprogramming of the metabolism of the mouse liver after acute T. gondii infection. Functional characterization of the altered proteins may enhance understanding of the host responses to T. gondii infection and lead to the identification of new therapeutic targets.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Induction of phase I, II and III drug metabolism/transport by xenobiotics.

            Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt), in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the retinoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fibrate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these CYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sulforaphane) generally appear to be electrophiles. They generally possess electrophilic-mediated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and CAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular "stress" response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other "cellular stresses" including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the "stress" expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against "environmental" insults such as those elicited by exposure to xenobiotics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Innate immunity to Toxoplasma gondii infection.

              Toxoplasma gondii is a protozoan parasite of global importance. In the laboratory setting, T. gondii is frequently used as a model pathogen to study mechanisms of T helper 1 (TH1) cell-mediated immunity to intracellular infections. However, recent discoveries have shown that innate type 1 immune responses that involve interferon-γ (IFNγ)-producing natural killer (NK) cells and neutrophils, rather than IFNγ-producing T cells, predetermine host resistance to T. gondii. This Review summarizes the Toll-like receptor (TLR)-dependent mechanisms that are responsible for parasite recognition and for the induction of IFNγ production by NK cells, as well as the emerging data about the TLR-independent mechanisms that lead to the IFNγ-mediated elimination of T. gondii.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                22 March 2016
                2016
                : 11
                : 3
                : e0152022
                Affiliations
                [1 ]State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
                [2 ]College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China
                [3 ]Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom
                University of Cambridge, UNITED KINGDOM
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: XQZ DHZ. Performed the experiments: JJH JM. Analyzed the data: JJH. Contributed reagents/materials/analysis tools: HME HQS DHZ. Wrote the paper: JJH HME XQZ.

                Article
                PONE-D-15-44100
                10.1371/journal.pone.0152022
                4803215
                27003162
                e81c80c7-5d21-430b-8191-7b5e3be682b2
                © 2016 He et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 31 October 2015
                : 8 March 2016
                Page count
                Figures: 4, Tables: 0, Pages: 15
                Funding
                Project support was provided by the National Natural Science Foundation of China (Grant No. 31230073) and the Science Fund for Creative Research Groups of Gansu Province (Grant No. 1210RJIA006). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Protozoans
                Parasitic Protozoans
                Toxoplasma
                Toxoplasma Gondii
                Medicine and Health Sciences
                Pharmacology
                Pharmacokinetics
                Drug Metabolism
                Biology and life sciences
                Biochemistry
                Proteins
                DNA-binding proteins
                Transcription Factors
                Biology and Life Sciences
                Genetics
                Gene Expression
                Gene Regulation
                Transcription Factors
                Biology and Life Sciences
                Biochemistry
                Proteins
                Regulatory Proteins
                Transcription Factors
                Biology and Life Sciences
                Biochemistry
                Metabolism
                Metabolic Pathways
                Xenobiotic Metabolism
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogenesis
                Host-Pathogen Interactions
                Biology and Life Sciences
                Immunology
                Immune Response
                Medicine and Health Sciences
                Immunology
                Immune Response
                Biology and Life Sciences
                Biochemistry
                Metabolism
                Metabolic Processes
                Biology and Life Sciences
                Biochemistry
                Proteomics
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article