0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Using acetone for rapid PCR‐amplifiable DNA extraction from recalcitrant woody plant taxa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Premise

          Quick and effective DNA extraction from plants for subsequent PCR amplification is sometimes challenging when working across diverse plant taxa that may contain a variety of inhibitory compounds. Time‐consuming methods may be needed to overcome these inhibitory effects as well as the effects of various preservation and collection methods to extract DNA from leaf samples. Our objective was to develop a rapid DNA extraction protocol that could be used with diverse plant taxa to produce high‐quality DNA suitable for downstream PCR applications.

          Methods and Results

          We tested the efficacy of acetone in extracting DNA from fresh, frozen, oven‐dried, acetone‐fixed, and herbarium leaf material of 22 species from 16 woody and herbaceous plant families. An improved simplified DNA extraction protocol was developed using acetone‐fixed leaf material. The addition of 1% sodium dodecyl sulfate solution resulted in the optimal extraction from all tissue samples. The DNA resulting from the extraction protocol was readily amplified using real‐time PCR assays.

          Conclusions

          The protocol described here resulted in the extraction of DNA from recalcitrant plant species that was of sufficient quality and quantity for PCR amplification, as indicated by the low threshold cycle values from real‐time assays. This method is simple, fast, and cost‐effective, and is a reliable tool for extracting high‐quality DNA from plant material containing PCR inhibitors.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity.

          The internal transcribed spacer (ITS) of nuclear ribosomal DNA is one of the most commonly used DNA markers in plant phylogenetic and DNA barcoding analyses, and it has been recommended as a core plant DNA barcode. Despite this popularity, the universality and specificity of PCR primers for the ITS region are not satisfactory, resulting in amplification and sequencing difficulties. By thoroughly surveying and analysing the 18S, 5.8S and 26S sequences of Plantae and Fungi from GenBank, we designed new universal and plant-specific PCR primers for amplifying the whole ITS region and a part of it (ITS1 or ITS2) of plants. In silico analyses of the new and the existing ITS primers based on these highly representative data sets indicated that (i) the newly designed universal primers are suitable for over 95% of plants in most groups; and (ii) the plant-specific primers are suitable for over 85% of plants in most groups without amplification of fungi. A total of 335 samples from 219 angiosperm families, 11 gymnosperm families, 24 fern and lycophyte families, 16 moss families and 17 fungus families were used to test the performances of these primers. In vitro PCR produced similar results to those from the in silico analyses. Our new primer pairs gave PCR improvements up to 30% compared with common-used ones. The new universal ITS primers will find wide application in both plant and fungal biology, and the new plant-specific ITS primers will, by eliminating PCR amplification of nonplant templates, significantly improve the quality of ITS sequence information collections in plant molecular systematics and DNA barcoding.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evaluation of real-time PCR amplification efficiencies to detect PCR inhibitors.

            Real-time PCR analysis is a sensitive template DNA quantitation strategy that has recently gained considerable attention in the forensic community. However, the utility of real-time PCR methods extends beyond quantitation and allows for simultaneous evaluation of template DNA extraction quality. This study presents a computational method that allows analysts to identify problematic samples with statistical reliability by comparing the amplification efficiencies of unknown template DNA samples with clean standards. In this study, assays with varying concentrations of tannic acid are used to evaluate and adjust sample-specific amplification efficiency calculation methods in order to optimize their inhibitor detection capabilities. Kinetic outlier detection and prediction boundaries are calculated to identify amplification efficiency outliers. Sample-specific amplification efficiencies calculated over a four-cycle interval starting at the threshold cycle can be used to detect reliably the presence of 0.4 ng of tannic acid in a 25 microL PCR reaction. This approach provides analysts with a precise measure of inhibition severity when template samples are compromised. Early detection of problematic samples allows analysts the opportunity to consider inhibitor mitigation strategies prior to genotype or DNA sequence analysis, thereby facilitating sample processing in high-throughput forensic operations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A quick and inexpensive method for removing polysaccharides from plant genomic DNA.

              A quick and inexpensive method has been demonstrated to remove polysaccharide contamination from plant DNA. Isolated plant genomic DNA with polysaccharide contaminants was dissolved in TE (10 mM Tris-HCl, pH 7.4, 1 mM EDTA) with NaCl ranging from 0.5-3.0 M, then precipitated with two volumes of ethanol. Most of the polysaccharides were removed effectively in a single high-salt precipitation at 1.0-2.5 M NaCl. At 3.0 M NaCl, the salt precipitated out of solution. Purified DNA was easily digested by either HindIII or EcoRI and was satisfactory as a template for PCR. The results show that high-salt precipitation effectively removed polysaccharides and their inhibitory effects on restriction enzyme and Taq polymerase activity.
                Bookmark

                Author and article information

                Contributors
                margaret.pooler@usda.gov
                Journal
                Appl Plant Sci
                Appl Plant Sci
                10.1002/(ISSN)2168-0450
                APS3
                Applications in Plant Sciences
                John Wiley and Sons Inc. (Hoboken )
                2168-0450
                03 December 2020
                December 2020
                : 8
                : 12 ( doiID: 10.1002/aps3.v8.12 )
                : e11403
                Affiliations
                [ 1 ] U.S. Department of Agriculture Agricultural Research Service U.S. National Arboretum, Floral and Nursery Plants Research Unit Beltsville Maryland USA
                Author notes
                [*] [* ] 2Author for correspondence: margaret.pooler@ 123456usda.gov

                [*]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0001-8781-8689
                https://orcid.org/0000-0002-9782-0552
                Article
                APS311403
                10.1002/aps3.11403
                7742202
                e936801f-abc2-4a2e-9afe-393023b7ff70
                © 2020 Gouker et al. Applications in Plant Sciences is published by Wiley Periodicals, LLC on behalf of the Botanical Society of America

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 May 2020
                : 17 September 2020
                Page count
                Figures: 0, Tables: 3, Pages: 4, Words: 3205
                Categories
                Protocol Note
                Protocol Note
                Custom metadata
                2.0
                December 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.9.5 mode:remove_FC converted:16.12.2020

                dna extraction,inhibitors,real‐time pcr,woody plants
                dna extraction, inhibitors, real‐time pcr, woody plants

                Comments

                Comment on this article