8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Jumping mechanisms and performance in beetles. I. Flea beetles (Coleoptera: Chrysomelidae: Alticini)

      ,
      The Journal of Experimental Biology
      The Company of Biologists

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present study analyses the anatomy, mechanics and functional morphology of the jumping apparatus, the performance and the kinematics of the natural jump of flea beetles (Coleoptera: Chrysomelidae: Galerucinae: Alticini). The kinematic parameters of the initial phase of the jump were calculated for five species from five genera (average values from minimum to maximum): acceleration 0.91-2.25 (×10(3)) m s(-2), velocity 1.48-2.80 m s(-1), time to take-off 1.35-2.25 ms, kinetic energy 2.43-16.5 µJ, G: -force 93-230. The jumping apparatus is localized in the hind legs and formed by the femur, tibia, femoro-tibial joint, modified metafemoral extensor tendon, extensor ligament, tibial flexor sclerite, and extensor and flexor muscles. The primary role of the metafemoral extensor tendon is seen in the formation of an increased attachment site for the extensor muscles. The rubber-like protein resilin was detected in the extensor ligament, i.e. a short, elastic element connecting the extensor tendon with the tibial base. The calculated specific joint power (max. 0.714 W g(-1)) of the femoro-tibial joint during the jumping movement and the fast full extension of the hind tibia (1-3 ms) suggest that jumping is performed via a catapult mechanism releasing energy that has beforehand been stored in the extensor ligament during its stretching by the extensor muscles. In addition, the morphology of the femoro-tibial joint suggests that the co-contraction of the flexor and the extensor muscles in the femur of the jumping leg is involved in this process.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure.

          Synchrotron-generated X-rays provide scientists with a multitude of investigative techniques well suited for the analysis of the composition and structure of all types of materials and specimens. Here, we describe the properties of synchrotron-generated X-rays and the advantages that they provide for qualitative morphological research of millimetre-sized biological organisms and biomaterials. Case studies of the anatomy of insect heads, of whole microarthropods and of the three-dimensional reconstruction of the cuticular tendons of jumping beetles, all performed at the beamline ID19 of the European Synchrotron Radiation Facility (ESRF), are presented to illustrate the techniques of phase-contrast tomography available for anatomical and structural investigations. Various sample preparation techniques are described and compared and experimental settings that we have found to be particularly successful are given. On comparing the strengths and weaknesses of the technique with traditional histological thin sectioning, we conclude that synchrotron radiation microtomography has a great potential in biological microanatomy.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Fast actions in small animals: springs and click mechanisms

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects

              Background Many insects jump by storing and releasing energy in elastic structures within their bodies. This allows them to release large amounts of energy in a very short time to jump at very high speeds. The fastest of the insect jumpers, the froghopper, uses a catapult-like elastic mechanism to achieve their jumping prowess in which energy, generated by the slow contraction of muscles, is released suddenly to power rapid and synchronous movements of the hind legs. How is this energy stored? Results The hind coxae of the froghopper are linked to the hinges of the ipsilateral hind wings by pleural arches, complex bow-shaped internal skeletal structures. They are built of chitinous cuticle and the rubber-like protein, resilin, which fluoresces bright blue when illuminated with ultra-violet light. The ventral and posterior end of this fluorescent region forms the thoracic part of the pivot with a hind coxa. No other structures in the thorax or hind legs show this blue fluorescence and it is not found in larvae which do not jump. Stimulating one trochanteral depressor muscle in a pattern that simulates its normal action, results in a distortion and forward movement of the posterior part of a pleural arch by 40 μm, but in natural jumping, the movement is at least 100 μm. Conclusion Calculations showed that the resilin itself could only store 1% to 2% of the energy required for jumping. The stiffer cuticular parts of the pleural arches could, however, easily meet all the energy storage needs. The composite structure therefore, combines the stiffness of the chitinous cuticle with the elasticity of resilin. Muscle contractions bend the chitinous cuticle with little deformation and therefore, store the energy needed for jumping, while the resilin rapidly returns its stored energy and thus restores the body to its original shape after a jump and allows repeated jumping.
                Bookmark

                Author and article information

                Journal
                The Journal of Experimental Biology
                J Exp Biol
                The Company of Biologists
                0022-0949
                1477-9145
                July 06 2016
                July 01 2016
                July 06 2016
                July 01 2016
                : 219
                : 13
                : 2015-2027
                Article
                10.1242/jeb.140533
                27385755
                e974d888-ebb3-468c-824f-a2ecfdf5ae11
                © 2016

                http://www.biologists.com/user-licence-1-1

                History

                Comments

                Comment on this article