0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Managing Lethal Browning and Microbial Contamination in Musa spp. Tissue Culture: Synthesis and Perspectives

      , , , ,
      Horticulturae
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Browning and contamination are regarded as the main constraints in the plant tissue culture of Musa spp. that can hinder the success of plant propagation in vitro. Browning is caused by enzymatic reactions due to explant injury, while microbial contamination is caused by phyllospheric, rhizospheric, and endophytic microorganisms that reside on, in, and inside the plants. When not properly addressed, they can cause decreased regenerative ability, decreased callus growth, inhibited adventitious shoot growth, and even tissue death. To overcome the browning problem, various attempts have been made in vitro, e.g., immersing the explants in an anti-browning solution, incorporating anti-browning compounds into the medium, and manipulating cultural practices. Correspondingly, to control the problem of contamination, efforts have been made, for example, using various methods, such as thermotherapy, chemotherapy, and cryotherapy, and chemical agents, such as disinfectants, antiseptics, and nanoparticles. This review aims to investigate and provide a comprehensive understanding of the causes of browning and contamination as well as the many approaches used to control browning and contamination problems in Musa spp. tissue cultures.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles

          Multidrug resistance of the pathogenic microorganisms to the antimicrobial drugs has become a major impediment toward successful diagnosis and management of infectious diseases. Recent advancements in nanotechnology-based medicines have opened new horizons for combating multidrug resistance in microorganisms. In particular, the use of silver nanoparticles (AgNPs) as a potent antibacterial agent has received much attention. The most critical physico-chemical parameters that affect the antimicrobial potential of AgNPs include size, shape, surface charge, concentration and colloidal state. AgNPs exhibits their antimicrobial potential through multifaceted mechanisms. AgNPs adhesion to microbial cells, penetration inside the cells, ROS and free radical generation, and modulation of microbial signal transduction pathways have been recognized as the most prominent modes of antimicrobial action. On the other side, AgNPs exposure to human cells induces cytotoxicity, genotoxicity, and inflammatory response in human cells in a cell-type dependent manner. This has raised concerns regarding use of AgNPs in therapeutics and drug delivery. We have summarized the emerging endeavors that address current challenges in relation to safe use of AgNPs in therapeutics and drug delivery platforms. Based on research done so far, we believe that AgNPs can be engineered so as to increase their efficacy, stability, specificity, biosafety and biocompatibility. In this regard, three perspectives research directions have been suggested that include (1) synthesizing AgNPs with controlled physico-chemical properties, (2) examining microbial development of resistance toward AgNPs, and (3) ascertaining the susceptibility of cytoxicity, genotoxicity, and inflammatory response to human cells upon AgNPs exposure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA silencing as a plant immune system against viruses.

            O Voinnet (2001)
            "RNA silencing" refers to related processes of post-trancriptional control of gene expression found in plants, animals and fungi. A unifying feature of RNA silencing is that it mediates sequence-specific degradation of target transcripts, recruiting RNA molecules of 21-23 nucleotides as specificity determinants. In higher plants, RNA silencing serves as an adaptive, antiviral defence system, which is transmitted systemically in response to localized virus challenge. Plant viruses have elaborated a variety of counter-defensive measures to overcome the host silencing response. One of these strategies is to produce proteins that target the cell autonomous or signalling steps of RNA silencing. It is not known whether a similar antiviral mechanism also operates in animal cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation.

              Temperature dramatically affects plant-virus interactions. Outbreaks of virus diseases are frequently associated with low temperature, while at high temperature viral symptoms are often attenuated (heat masking) and plants rapidly recover from virus diseases. However, the underlying mechanisms of these well-known observations are not yet understood. RNA silencing is a conserved defence system of eukaryotic cells, which operates against molecular parasites including viruses and transgenes. Here we show that at low temperature both virus and transgene triggered RNA silencing are inhibited. Therefore, in cold, plants become more susceptible to viruses, and RNA silencing-based phenotypes of transgenic plants are lost. Consistently, the levels of virus- and transgene-derived small (21-26 nucleotide) interfering (si) RNAs-the central molecules of RNA silencing-mediated defence pathways-are dramatically reduced at low temperature. In contrast, RNA silencing was activated and the amount of siRNAs gradually increased with rising temperature. However, temperature does not influence the accumulation of micro (mi) RNAs, which play a role in developmental regulation, suggesting that the two classes of small (si and mi) RNAs are generated by different nuclease complexes.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Horticulturae
                Horticulturae
                MDPI AG
                2311-7524
                April 2023
                April 01 2023
                : 9
                : 4
                : 453
                Article
                10.3390/horticulturae9040453
                ea9d1b56-6081-4825-8100-ed703f1a13a4
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article