25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inflammation and Oxidative Stress in Chronic Kidney Disease—Potential Therapeutic Role of Minerals, Vitamins and Plant-Derived Metabolites

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic kidney disease (CKD) is a debilitating pathology with various causal factors, culminating in end stage renal disease (ESRD) requiring dialysis or kidney transplantation. The progression of CKD is closely associated with systemic inflammation and oxidative stress, which are responsible for the manifestation of numerous complications such as malnutrition, atherosclerosis, coronary artery calcification, heart failure, anemia and mineral and bone disorders, as well as enhanced cardiovascular mortality. In addition to conventional therapy with anti-inflammatory and antioxidative agents, growing evidence has indicated that certain minerals, vitamins and plant-derived metabolites exhibit beneficial effects in these disturbances. In the current work, we review the anti-inflammatory and antioxidant properties of various agents which could be of potential benefit in CKD/ESRD. However, the related studies were limited due to small sample sizes and short-term follow-up in many trials. Therefore, studies of several anti-inflammatory and antioxidant agents with long-term follow-ups are necessary.

          Related collections

          Most cited references154

          • Record: found
          • Abstract: found
          • Article: not found

          Aspects of immune dysfunction in end-stage renal disease.

          End-stage renal disease (ESRD) is associated with significantly increased morbidity and mortality resulting from cardiovascular disease (CVD) and infections, accounting for 50% and 20%, respectively, of the total mortality in ESRD patients. It is possible that these two complications are linked to alterations in the immune system in ESRD, as uremia is associated with a state of immune dysfunction characterized by immunodepression that contributes to the high prevalence of infections among these patients, as well as by immunoactivation resulting in inflammation that may contribute to CVD. This review describes disorders of the innate and adaptive immune systems in ESRD, underlining the specific role of ESRD-associated disturbances of Toll-like receptors. Finally, based on the emerging links between the alterations of immune system, CVD, and infections in ESRD patients, it emphasizes the potential role of the immune dysfunction in ESRD as an underlying cause for the high mortality in this patient population and the need for more studies in this area.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy.

            Many lines of evidence, ranging from in vitro experiments and pathological examinations to epidemiological studies, show that inflammation is a cardinal pathogenetic mechanism in diabetic nephropathy. Thus, modulation of inflammatory processes in the setting of diabetes mellitus is a matter of great interest for researchers today. The relationships between inflammation and the development and progression of diabetic nephropathy involve complex molecular networks and processes. This Review, therefore, focuses on key proinflammatory molecules and pathways implicated in the development and progression of diabetic nephropathy: the chemokines CCL2, CX3CL1 and CCL5 (also known as MCP-1, fractalkine and RANTES, respectively); the adhesion molecules intercellular adhesion molecule 1, vascular cell adhesion protein 1, endothelial cell-selective adhesion molecule, E-selectin and α-actinin 4; the transcription factor nuclear factor κB; and the inflammatory cytokines IL-1, IL-6, IL-18 and tumor necrosis factor. Advances in the understanding of the roles that these inflammatory pathways have in the context of diabetic nephropathy will facilitate the discovery of new therapeutic targets. In the next few years, promising new therapeutic strategies based on anti-inflammatory effects could be successfully translated into clinical treatments for diabetic complications, including diabetic nephropathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions.

              Increasing interest in the health benefits of tea has led to the inclusion of tea extracts in dietary supplements and functional foods. However, epidemiologic evidence regarding the effects of tea consumption on cancer and cardiovascular disease risk is conflicting. While tea contains a number of bioactive chemicals, it is particularly rich in catechins, of which epigallocatechin gallate (EGCG) is the most abundant. Catechins and their derivatives are thought to contribute to the beneficial effects ascribed to tea. Tea catechins and polyphenols are effective scavengers of reactive oxygen species in vitro and may also function indirectly as antioxidants through their effects on transcription factors and enzyme activities. The fact that catechins are rapidly and extensively metabolized emphasizes the importance of demonstrating their antioxidant activity in vivo. In humans, modest transient increases in plasma antioxidant capacity have been demonstrated following the consumption of tea and green tea catechins. The effects of tea and green tea catechins on biomarkers of oxidative stress, especially oxidative DNA damage, appear very promising in animal models, but data on biomarkers of in vivo oxidative stress in humans are limited. Larger human studies examining the effects of tea and tea catechin intake on biomarkers of oxidative damage to lipids, proteins, and DNA are needed.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                30 December 2019
                January 2020
                : 21
                : 1
                : 263
                Affiliations
                [1 ]Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy; srapa@ 123456unisa.it (S.F.R.); pcampiglia@ 123456unisa.it (P.C.)
                [2 ]UOC Nephrology AORN “San Giuseppe Moscati”, C.da Amoretta, 83100 Avellino, Italy; br.diiorio@ 123456gmail.com
                [3 ]European Biomedical Research Institute of Salerno, Via De Renzi 50, I-84125 Salerno, Italy
                [4 ]Department of Internal Medicine and KfH Kidney Center, University of Würzburg, KfH Kidney Center Würzburg, 97080 Würzburg, Germany; august.heidland@ 123456t-online.de
                Author notes
                [* ]Correspondence: smarzocco@ 123456unisa.it ; Tel.: +39-89-969250
                Author information
                https://orcid.org/0000-0003-2779-4181
                https://orcid.org/0000-0002-1069-2181
                https://orcid.org/0000-0003-2333-1630
                Article
                ijms-21-00263
                10.3390/ijms21010263
                6981831
                31906008
                eac0ec6b-5a16-41d6-a550-3776d71311cf
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 October 2019
                : 27 December 2019
                Categories
                Review

                Molecular biology
                chronic kidney disease (ckd),inflammation,oxidative stress,uremic toxins,minerals,vitamins,plant-derived metabolites

                Comments

                Comment on this article